Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...
Reexamination Certificate
1996-12-12
2004-01-06
Wortman, Donna C. (Department: 1648)
Chemistry: molecular biology and microbiology
Measuring or testing process involving enzymes or...
Involving antigen-antibody binding, specific binding protein...
C435S007200, C436S501000, C514S001000
Reexamination Certificate
active
06673558
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to drug compositions or formulations which have the capability of eliciting specific responses from cellular receptors and, specifically, to those optional compositions/formulations which prevent desensitization of such receptors.
2. Discussion of Relevant Art
Throughout this disclosure, I shall use terms with their generally accepted meanings and, on occasion, supplement those meanings as indicated in order to clarify a particular facet of my invention by concentrating on a specific relationship or agenda that is normally generalized by use of the term.
An agonist is a substance/drug that has affinity for and stimulates physiologic activity at cell receptors that are normally stimulated by naturally occurring substances. As used throughout, an agonist is such a substance/drug that produces a maximal or nearly maximal response, whereas an antagonist is a substance or molecule that produces no response, but can block the action of the drug-agonist. A partial agonist produces a moderate response and can also block the response of the receptor to the agonist-drug. A competitive antagonist is a substance which competes with the agonist for the receptor, but produces no response.
Present theories of receptor activation calculate the response of a receptor as some function of an agonist-receptor complex. There have been several modifications and criticisms of receptor theory (see, for example Keen, M.; Testing Models of agonist for G-Protein Coupled Receptors:
Trends Pharmacol. Sci
. 12, 371-374, 1991), but none of these treatments examined the discrete change induced by ligand binding to two equilibrium states of a receptor and, consequently, no one has developed the instant (and exacting) method for determining actual drug compositions/formulations which effectively prevent desensitization of cellular receptors that are normally and incipiently responsive to a host of agonists. Careful experimental investigations of several different receptor systems have revealed that receptor theory fails to describe the observed responses in a number of cases. Also, the phenomenon of rapid desensitization has been difficult to model by modern receptor theories. Originally many of these experimental observations were reported in 1957 by del Castillo and Katz in their pioneering work on desensitization (del Castillo, J. and Katz, B.
Proc. Roy. Soc. Lond
. 146, 369-381, 1957). The present theories are inadequate for at least two fundamental reasons; first, they fail to describe experimental observations except for limited cases and second, they offer only a “black box” description instead of a physicochemical explanation for receptor response.
In 1991, Geoffrey et al. found that competitive antagonists of a glutamate receptor decreased the desensitization of the receptor (See Geoffrey, M., et al.
Molecular Pharmacology
39, 587-591; 1991). They concluded, in this study, that such paradoxical behavior could not be described by the current theories of pharmacologic action deriving from (for example) experimental observations first recorded in 1957 by del Castillo & Katz performing their pioneering work on desensitization. Until most recently, no theory has been able to adequately explain how the behavior observed by Geoffrey et al. occurs; and, the utility of mixing competitive antagonists (or partial agonists) with agonists accurately and, therefore, efficiently to prevent receptor desensitization has been all but overlooked.
Other articles which show the utility (in vivo) of using antagonist/agonist compositions, to prevent receptor desensitization, are extant. One such article is “Antitachyphylactic Effects of Progesterone and Oxytocin on Term Human Myometrial Contractile Activity In Vitro” by Xin Fu, MD, Masoumeh Rezapour, MD, Mats Löfgren, MD, PhD, Ulf ulmsten, MD, PhD, and Torbjörn Bäckström, MD, PhD, all of the Department of Gynecology and Obstetrics, University Hospital, Uppsala, Sweden and published in
Obstetrics
&
Gynecology
(1993; 82: 532-8). Therein, Xin Fu et al. conclude that a quantum of an antagonist, progesterone, is observed to reverse the tachyphylaxis (desensitization) to oxytocin (agonist) of human myometrium. No quantification methodology is suggested for arriving at proper dosages of the antagonist for consistently achieving this reversal, however.
Another disclosure is of certain importance in the quest for in vivo studies to support modeling investigational techniques in drug research: “Beta
1
and Beta
2
Adrenoceptors in the Human Heart: Properties, Function, and Alterations in Chronic Heart Failure” by Otto-Erich Brodde of Bio-chemisches Forschungslabor, Medizinische Klinik and Poliklinik, Abteilung fur Nieren-und Hochdruckkrankheiten, Universitätsklinikum, Essen, Germany. (
Pharmacological Review
, 1991, Vol. 43, No. 2). This is a detailed study on chronic heart failure which discusses a recognized utility of using Beta-AR (beta-adnergic receptor) antagonists for patients in certain types of heart failure (pp. 228-230) and which hypothesizes that such work by occupying Beta-ARs and prevent desensitization of cardiac Beta-ARs (see p.233 and references therein). No further information is detailed which would inform one of ordinary skill how to quantify the portions of antagonists necessary to fully retard i.e., prevent “down-regulation” (desensitization, ibid p. 233) of Beta-ARs. As recently as Jul. 24, 1994, the instant inventor presented his work “A Novel Biophysical Model for Receptor Activation” (R. Lanzara, CUNY, New York and Bio-Balance, Inc., New York, N.Y.) to the XIIth International Congress of Pharmacology at Montréal, Québec, Canada. Also presented was a paper published by him concerning Weber's Law (“Weber's Law Modeled by the Mathematical Description of a Beam Balance”,
Mathematical Biosciences
, 122:89-94 (1994)). These works are included for their teachings on the instant concept, methods of calculation to provide quanta of antagonist: agonist necessary for achieving the objectives of the invention and demonstrate objectively by use of in vivo empirical studies that the invention is a substantial improvement to the prior art and a significant advancement in the field.
3. Incorporation by Reference
The instant invention, being novel in its approach to solving the universally felt problem of drug receptor desensitization, is best appreciated with a thorough consideration of the works of the inventor and others. To this end, the following of the aforementioned works: Geoffroy et al. “Reduction of Desensitization of a Glutamate Ionotropic Receptor by Antagonists”
Molecular Pharmacology
39: 587-91 (1991); Xin Fu et al., “Antitachyphylactic Effects of Progesterone and Oxytocin on Term Human Myometrial Contractile Activity In Vitro”,
Obstetrics
&
Gynecology
, 82: 532-38 (1993); OttoErich Brodde, “Beta
1
and Beta
2
Adrenoceptors in the Human Heart: Properties, Function, and Alterations in Chronic Heart Failure”,
Pharmocological Review
, Vol. 43, No. 2 (1991); Lanzara, R. “A Novel Bio-physical Model for Receptor Activation” Dept. of Allied Health Sci., CUNY, NY, N.Y. and Bio-Balance Inc., NY, N.Y.; and, Lanzara, R. “Weber's Law Modeled by the Mathematical Description of a Beam Balance”,
Mathematical Biosciences
, 122: 89-94 (1994) are incorporated herein by reference.
SUMMARY OF THE INVENTION
I have solved the problem of determining the optimal concentration of an antagonist or inhibitor which is necessary to prevent cellular receptor desensitization without causing unnecessary and unwanted inhibition. My formulation combines a competitive antagonist with an agonist for/of a particular receptor in a specific proportion that maximizes the receptor response to the agonist and maintains this maximum response. This formulation describes precisely the concentration of the antagonist relative to that of the agonist. This concentration is given by the dissociation constant of the antagonist, K
i
, divided by the square root of one-half of the product of th
Schmeiser Olsen & Watts
Wortman Donna C.
LandOfFree
Drug compositions to prevent desensitization of cellular... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Drug compositions to prevent desensitization of cellular..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Drug compositions to prevent desensitization of cellular... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3261102