Drop-on-demand ink jet printer capable of directional...

Incremental printing of symbolic information – Ink jet – Ejector mechanism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06536873

ABSTRACT:

FIELD OF THE INVENTION
This invention generally relates to ink jet printer apparatus and methods and more particularly relates to a drop-on-demand ink jet printer capable of directional control of ink drop ejection, and method of assembling the printer.
BACKGROUND OF THE INVENTION
An ink jet printer produces images on a receiver by ejecting ink droplets onto the receiver in an imagewise fashion. The advantages of non-impact, low-noise, low energy use, and low cost operation in addition to the capability of the printer to print on plain paper are largely responsible for the wide acceptance of ink jet printers in the marketplace.
However, it is desirable to control the angle at which the droplet travels to the recording medium. For example, if any one of ink ejection nozzles is inoperable, such as due to clogging or manufacturing defect, it would be desirable to redirect droplets from operable nozzles to print at locations that would otherwise be printed by the inoperable nozzle. In addition, if each nozzle can print dots at a plurality of locations on the receiver, then fewer nozzles are needed, thereby reducing print head manufacturing costs.
In addition, it is desirable to control velocity at which the ink droplets strike the recording medium. Control of velocity in turn controls printing speed.
Ink jet printers may be either DOD (Drop-Qn-Demand) or “continuous” ink jet printers. In this regard, in the case of DOD ink jet printers, at every orifice a pressurization actuator is used to produce the ink jet droplet. Either one of two types of actuators may be used. These two types of actuators are heat actuators and piezoelectric actuators.
A DOD ink jet printer having a heat actuator is disclosed in Great Britain Pat. No. 2,007,162, which issued to Endo et al. in 1979. In such a printer, a heater placed at a convenient location heats the ink and a quantity of the ink will phase change into a gaseous bubble and raise the internal ink pressure sufficiently for an ink droplet to be expelled to the recording medium. However, the Endo et al. patent does not disclose a technique for directional control of the ink droplet ejected from the printer. More specifically, the Endo et al. patent does not disclose a technique to redirect the ink droplets to a plurality of printing locations on the recording medium. In addition, the Endo et al. patent does not appear to disclose a technique for controlling velocity of the ink droplet.
A DOD ink jet printer combining a pressurized reservoir and a heat-assisted drop ejection mechanism is disclosed in U.S. Pat. No. 4,275,290, which issued to Cielo et al. According to the Cielo et al. patent, a liquid ink printing system supplies ink to a reservoir at a predetermined pressure and the ink is retained in orifices by surface tension until the surface tension is reduced by heat from an electrically energized resistive heater, which causes ink to issue from the orifice and to thereby contact a paper receiver. However, the Cielo et al. patent does not disclose a technique for directional control of the ink drop ejected from the printer. More specifically, the Endo et al. patent does not disclose a technique to redirect the ink droplets to a plurality of printing locations on the recording medium. In addition, the Cielo et al. patent does not appear to disclose a technique for controlling velocity of the ink droplet.
A DOD ink jet printer having a piezoelectric actuator is disclosed in U.S. Pat. No. 3,946,398, which issued to Kyser et al. in 1970. In this type of printer, a piezoelectric material is used, which piezoelectric material possesses piezoelectric properties such that an applied electric field produces a mechanical stress in the material to decrease ink channel volume and thereby eject an ink droplet. However, the Kyser et al. patent does not disclose a technique for directional control of the ink drop ejected from the printer. More specifically, the Kyser et al. patent does not disclose a technique to redirect the ink droplets to a plurality of printing locations on the recording medium. In addition, the Kyser et al. patent does not appear to disclose a technique for controlling velocity of the ink droplet.
A “continuous” ink jet printer is disclosed in U.S. Pat. No. 4,631,550 issued Dec. 23, 1986 to Michael J. Piatt, et al. and assigned to the assignee of the present invention. Such a continuous ink jet printer utilizes electrostatic charging tunnels that are placed close to where ink droplets are being ejected in the form of a stream. Selected ones of the droplets are electrically charged by the charging tunnels. The charged droplets are deflected downstream by the presence of deflector plates that have a predetermined electric potential difference between them. A gutter may be used to intercept the charged droplets, while the uncharged droplets are free to strike the receiver. However, the Piatt et al. patent does not disclose a technique for directional control of the ink drop ejected from a DOD printer. More specifically, the Kyser et al. patent does not disclose a technique to redirect the ink droplets ejected by a DOD printer to a plurality of printing locations on the recording medium. In addition, the Piatt et al. patent does not appear to disclose a technique for controlling velocity of the ink droplet.
However, attempts have been made to provide ink jet printers having ink ejection nozzles capable of placing ink droplets at different locations on a scan line. For example, a continuous ink jet printer having means for correcting droplet trajectories to account for variations in droplet “throw distance” to improve droplet placement accuracy is disclosed in U.S. Pat. No. 4,540,990 issued Sep. 10, 1995 to Peter A. Crean. According to the Crean patent, distance sensing sensors periodically produce signals representative of the actual throw distance of the droplets and compare the signals indicative of the actual throw distance to a signal representative of the distance from the nozzles to a predetermined printing plane. The comparison signals are sent to a printer controller which adjusts the droplet trajectories in response thereto to correct the placement errors that would be caused by variations in the throw distance produced, for example, by wrinkles in the recording medium or dimensional tolerance variations in the recording medium transport system. Deflection of the droplets is obtained by varying deflection voltage of deflection electrodes that charge the droplets. However, the Crean patent does not disclose a technique for variable directional control of the ink drop ejected from a DOD ink jet printer because the Crean device is a continuous ink jet printer rather than a DOD ink jet printer. Also, the Crean patent does not disclose a technique other than use of a deflection voltage for directional control of the ink drop. Moreover, the Crean patent does not appear to disclose a technique for controlling velocity of the ink droplet.
Although each of the devices mentioned hereinabove is useful for its intended purpose, none of the DOD ink jet printing devices provides directional control of ink droplet ejection and none of the continuous ink jet printing devices uses a technique other than deflection voltage for directional control of the ink droplet. Moreover, none of the devices mentioned hereinabove controls velocity of the ink droplet.
Therefore, there has been a long-felt need to provide a drop-on-demand ink jet printer capable of directional control of ink drop ejection and method of assembling the printer.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a drop-on-demand ink jet printer capable of directional control of ink drop ejection, so that any one of a plurality of ink ejection nozzles belonging to the printer prints at a plurality of locations on a recording medium.
With the above object in view, the present invention resides in a drop-on-demand ink jet printer capable of directional control of ink drop ejection, comprising a print head body having an ink ejection orifice adapted to poise an

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Drop-on-demand ink jet printer capable of directional... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Drop-on-demand ink jet printer capable of directional..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Drop-on-demand ink jet printer capable of directional... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3048668

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.