Driving simulator

Education and demonstration – Vehicle operator instruction or testing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C434S062000, C472S003000, C472S027000, C472S091000, C472S130000, C472S136000, C472S089000

Reexamination Certificate

active

06719563

ABSTRACT:

BACKGROUND AND SUMMARY OF THE INVENTION
This application claims the priority of German Application No. 101 06 150.1, filed Feb. 10, 2001, the disclosure of which is expressly incorporated by reference herein.
The invention relates to a driving simulator, particularly for simulating the movements of earthbound vehicles. Earthbound vehicles include surface vehicles, such as road and rail vehicles, ships or aircraft on an airfield. Special embodiments of the driving simulator may also be used for simulating the movements of aircraft and spacecraft.
Driving simulators have been known for some time. In particular, a “six-legged movement system” meets the requirements of the field of flight simulation. For fully dynamic simulations, this six-legged movement system is expanded with a carriage that moves in the x and y directions. It has been seen, however, that these movement systems are very complex, heavy and cost-intensive when employed in simulating the movements of earthbound vehicles. Moreover, this simulation method can only generate the forces and moments that occur in earthbound vehicles with an enormous power requirement.
The representation of accelerations by a movement system of a driving simulator is of fundamental significance for creating the experience of dynamic fringe maneuvers. In earthbound vehicles, the imaging of translatory accelerations in the simulation region requires a change from the real-life situation, because translatory movements from the comparatively “infinite dimension of the real roadway network” must be projected onto a finite dimension of a movement surface. The rotational degrees of freedom of movement, unlike the translatory degrees of freedom, can be imaged in their entirety and to a realistic extent in a more or less limited movement space, depending on the selected concept of the movement system.
It is the object of the present invention to provide a driving simulator that takes into account the special qualities of the movements of earthbound vehicles, and assures a particularly realistic simulation.
The inventive step essentially lies in moving an object (self-propelled carrier unit), which can receive a vehicle or a dummy vehicle, over an essentially horizontal floor surface in the required manner. An advantageous embodiment of the movement surface in a driving simulator of the invention is as a level surface, particularly a circular or oval-shaped surface, because in automobiles the tire-road adhesion permits accelerations of approximately equal magnitude in the longitudinal and transverse vehicle directions ([comb-type] frictional circle). The invention is also clearly distinguished from the six-legged system with the x and y carriage in that additional centrifugal forces due to circular driving patterns can be employed considerably more easily.
A notable feature of the driving-simulator concept in accordance with the invention is that the centrifugal accelerations occurring when the carrier unit (carrier platform) moves in circular patterns can also be used in principle to represent sustained longitudinal accelerations. Here, the longitudinal axis of the respective test vehicle (or dummy vehicle) supported on the carrier unit is oriented relative to the center point of the circle through a corresponding rotation of the carrier unit.
In accordance with the invention, the object is accomplished by providing a driving simulator, particularly for simulating the movements of earthbound vehicles and watercraft, having a carrier unit. The carrier unit includes a rigid floor platform, on which a test vehicle or a test dummy can be mounted. At least one projection surface (A) and at least one projector are provided. At least three movement modules are provided, each of which has a wheel that rolls on a floor surface and can be steered, relative to the axis extending perpendicular to the floor surface, by a first drive, and can be driven by a respectively associated second drive. In contrast to the aforementioned “six-legged movement system,” the concept of the present invention—as indicated above—is based on the movement system of a self-moving object, which takes into account the fact that the core movements of an earthbound vehicle are executed in the horizontal plane, while the vertical dimension only plays a secondary role.
The present driving simulator includes a carrier unit having a rigid floor in the form of a platform (floor platform), on which a test vehicle is mounted—for example, in the center of the platform—on its own wheels, or on which the dummy vehicle is mounted. The dummy vehicle can be embodied as a so-called “mock-up,” that is, a mechanical vehicle simulation or decoy, or as a mock seat, or a so-called “cave,” a virtual, three-dimensional representation of the vehicle. The carrier unit also has at least one projection surface, onto which at least one projector can project an image for a driving simulation.
The primary components of the carrier unit are movement modules, which permit a movement of the carrier unit, at least in the horizontal plane. Each movement module, which is preferably disposed at the periphery of the carrier unit or the floor platform, possesses a wheel or a twin wheel that rolls on a floor surface and can be steered by a first drive relative to the axis extending perpendicular to the floor platform. A second drive is provided for driving the wheel in the two directions of rotation.
The self-moving carrier unit requires at least three movement modules. To assure stability, it can be advantageous to use four or five preferably equidistantly-spaced movement modules. The independent guidance of the wheels in terms of their steering axle and the wheel drive itself allows for pure forward and backward movements, pure transverse movements, pure rotational movements, and combinations of these movements. The drives for the respective wheels are preferably disposed in the wheel hubs. This allows the drive to have an especially compact design. Each wheel can be used to generate a driving and a braking moment. The required braking moment may require the provision of an additional wheel-brake arrangement.
The notably circular carrier unit simultaneously constitutes an ideal base for a projection mounting or dome. In accordance with one embodiment, the projection dome is spherical or spherical-segment-shaped, and has at least one projection surface on its inside. The projection surface can also be designed for a 360° simulation. For this purpose, appropriate projectors must be provided. In closed test vehicles, the projection can be limited to a horizontal ring of the semi-spherical surface, which is preferably to be dimensioned such that the driver's eye position affords him a view of all of the viewing fields. For open vehicles, the projection could be effected in the manner of an “Optimax” film. The projectors can preferably be disposed in the projection dome, particularly in the region of the zenith of the dome. Another option is rear projection, in which the projectors are disposed outside of the semi-spherical projection surface and project from the outside onto a semi-transparent projection screen. The number and arrangements of the projectors vary according to the type of projection.
A noise simulation can be effected, for example, with an audio system of a vehicle. In addition, the carrier unit, test vehicle or dummy vehicle can be equipped with further audio systems for locally simulating engine, rolling and wind noises.
Physical variables that are not actually present can therefore be simulated through visual impressions (projection surface), tactile impressions (vibrations) and acoustic impressions (noise simulation).
As mentioned above, the primary action in earthbound vehicles plays out in the horizontal region. When a vehicle moves on a road, however, vertical movements also occur due to uneven spots in the road surface or changes in the driving dynamics. If, in a first completed stage of the driving simulator, there is no display of a lifting degree of freedom, a lifting movement can

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Driving simulator does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Driving simulator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Driving simulator will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3240861

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.