Driving force control system for four-wheel drive vehicles

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Control of power distribution between vehicle axis or wheels

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06564134

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a driving force control system for a four-wheel drive vehicle, which controls the engagement forces of clutches to thereby control the drive forces distributed to auxiliary drive wheels.
2. Description of the Related Art
A driving force control system of this kind has been proposed by the present assignee in Japanese Laid-Open Patent Publication (Kokai) No. 10-194005, for a four-wheel drive vehicle including left and right front wheels as main drive wheels, and left and right rear wheels as auxiliary drive wheels. The engine of the vehicle is connected to the left and right front wheels via an automatic transmission, a front differential, and left and right front drive shafts. Further, the front differential is connected to the left and right rear wheels via a transfer, a propeller shaft, a rear differential, and left and right drive shafts.
The driving force control system includes left and right electromagnetic clutches provided for the rear differential, an electronic control unit (“ECU”) for control of these electromagnetic clutches, and a lock switch arranged on a dash board. The ECU controls the supply and cut-off of electric current to the solenoid coils of the respective clutches, whereby the clutches connect and disconnect the associated rear drive shafts to and from the propeller shaft. When these clutches are disengaged, the driving force of the engine is transmitted to the front wheels alone to thereby bring the vehicle into the front-wheel drive mode, whereas when the same are engaged, the driving force of the engine is also distributed to the rear wheels to bring the vehicle into the four-wheel drive mode. The engagement forces of the electromagnetic clutches are continuously changed according to the amounts of current supplied thereto, and the ECU controls the amounts of supplied current to vary the respective engagement forces of the left and right electromagnetic clutches whereby the driving forces distributed to the left and right rear drive wheels can be controlled independently of each other, as desired.
Further, when the driver operates the lock switch, the ECU executes a lock mode in which the amounts of current supplied to the clutches are made maximum to generate the maximum clutch engagement forces so as to maximize the driving forces distributed to the rear wheels. This makes it possible, for instance, to easily extricate the vehicle from a stuck condition on a snowy road.
However, the conventional driving force control system is configured such that the lock mode is unconditionally executed when the lock switch is operated. Therefore, if the driver operates the lock switch without the knowledge of the function of the lock switch or by mistake, the lock mode is unnecessarily executed. As a result, during this lock mode, the maximum amount of current continues to be supplied to the electromagnetic clutches to waste the electric power, and further fuel economy is degraded due to traveling of the vehicle in the four-wheel drive mode, which is fuel-consuming and, in this case, unnecessary. This can adversely affect the drivability as well, depending on the conditions of the vehicle. Further, the clutches are operated at their maximum engagement forces frequently and over extended time periods, so that the durability of the clutches is also degraded, which will offer an obstacle to the reduced size of electromagnetic clutches.
Further, in the conventional driving force control system, the lock mode is executed in a state where the clutch engagement forces are fixedly held at the maximum. On the other hand, after the vehicle gets unstuck from a stuck condition, the vehicle sometimes enters a traffic-congested traveling condition in which the running of the vehicle is controlled by engine brake or foot brake, with the accelerator pedal being scarcely stepped on by the user, and its lock switch being kept ON. In such a case, the engine output torque assumes a negative or small value, and hence it is almost unnecessary to distribute the driving force delivered to the front wheels to the rear wheels. Despite the fact, the vehicle continues to be in the lock mode in which the maximum clutch engagement forces are generated, and hence a large amount of electric power is wastefully consumed due to supply of the maximum amounts of current to the electromagnetic clutches.
SUMMARY OF THE INVENTION
It is a first object of the invention to provide a driving force control system for a four-wheel drive vehicle, which is capable of properly controlling the execution and cancellation of a lock mode in which the engagement forces of clutches for distributing a driving force to auxiliary drive wheels are made maximum, thereby reducing frequency and duration of the lock mode.
It is a second object of the invention to provide a driving force control system for a four-wheel drive vehicle, which is capable of properly controlling the engagement forces of clutches for distributing a driving force of the main drive wheels to auxiliary drive wheels, thereby causing the clutches to efficiently operate without waste of power.
To attain the first object, according to a first aspect of the invention, there is provided a driving force control system for a four-wheel drive vehicle including a pair of front wheels, a pair of rear wheels, an engine, a transmission for connecting one of the pair of front wheels and the pair of rear wheels to the engine, as main drive wheels, and clutches for connecting another of the pair of front wheels and the pair of rear wheels to the main drive wheels, as auxiliary drive wheels, the driving force control system controlling engagement forces of the clutches to thereby control distribution of a driving force of the main drive wheels to the auxiliary drive wheels.
The driving force control system according to the first aspect of the invention is characterized by comprising:
input means for being operated by a driver;
lock mode execution means for executing a lock mode in which the engagement forces of the clutches are set to predetermined maximum engagement forces, when the input means is operated;
low vehicle speed condition-determining means for determining whether or not the vehicle is in a predetermined low vehicle speed condition;
shift position-detecting means for detecting a shift position of the transmission; and
lock mode execution-permitting means for permitting the lock mode execution means to execute the lock mode, when the low vehicle speed condition-determining means determines that the vehicle is in the predetermined low vehicle speed condition, and at the same time the shift position-detecting means detects any of predetermined low-speed shift positions of the transmission.
According to this driving force control system, the lock mode execution means executes the lock mode in which the engagement forces of clutches for distributing a driving force to auxiliary drive wheels are made maximum, on condition that the input means is operated by the driver. Further, when the vehicle is determined to be in a predetermined low-vehicle speed condition, and at the same time the shift position of the transmission is detected to be any of predetermined low-speed shift positions, the lock mode execution-permitting means permits execution of the lock mode. The lock mode is executed by its nature mainly for the purpose of facilitating e.g. the extrication of the vehicle from a stuck condition, and hence the execution thereof is basically unnecessary when the vehicle is not in a low vehicle speed condition, including the stoppage of the same, or when the shift position of the transmission is in a medium or high speed position. Therefore, as described above, the lock mode is not executed only by operation of the input means, but is allowed to be executed on condition that the vehicle is in the predetermined low vehicle speed condition, and at the same time the shift position of the transmission is in any of the predetermined low-speed shift positions, whereby the lock mode can b

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Driving force control system for four-wheel drive vehicles does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Driving force control system for four-wheel drive vehicles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Driving force control system for four-wheel drive vehicles will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3031885

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.