Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Electric vehicle
Reexamination Certificate
2000-02-09
2001-08-21
Cuchlinski, Jr., William A. (Department: 3661)
Data processing: vehicles, navigation, and relative location
Vehicle control, guidance, operation, or indication
Electric vehicle
C701S084000, C701S087000, C477S046000, C477S003000, C180S065230, C180S065310
Reexamination Certificate
active
06278915
ABSTRACT:
BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates to a driving force control system for an automotive vehicle, and specifically to a driving force control system suitable for a hybrid vehicle employing a parallel hybrid system using both an internal combustion engine and an electric motor/generator as a propelling power source or an electric vehicle.
In recent years, there have been proposed and developed various parallel hybrid vehicles propelled by an internal combustion engine and/or an electric motor. In such parallel hybrid vehicles, it is desirable to produce a driving force (or driving torque) corresponding to both a driver's required driving force and required generated electric energy by operating an internal combustion engine with the lowest fuel consumption (the best fuel economy or the best engine efficiency) during an engine-propelled vehicle driving mode. On the other hand, during a motor-propelled vehicle driving mode, it is desirable to produce a driving force (or driving torque) corresponding to a driver's required driving force by operating an electric motor/generator with the lowest electric power consumption (the best motor/generator efficiency).
SUMMARY OF THE INVENTION
Accordingly, it is an object of the invention to realize a driving force corresponding to a driver's required driving force and/or required generated electric energy at an engine operating point of the lowest fuel consumption and/or at an electric-motor operating point (or a motor/generator operating point) of the lowest electric power consumption.
In order to accomplish the aforementioned and other objects of the present invention, a driving force control system for an automotive vehicle using driving torque produced by at least one of an internal combustion engine and an electric motor for propulsion, and including a battery giving and receiving electricity to and from the electric motor and a power-transmission mechanism having at least a continuously variable transmission for transmitting the driving torque therevia to drive wheels, the system comprises a vehicle speed sensor detecting vehicle speed, an engine speed sensor detecting engine speed of the engine, an accelerator sensor detecting an accelerator operating amount, a battery state-of-charge detection device detecting a state of charge of the battery, and a control unit being configured to be electrically connected to the vehicle sensor, the engine speed sensor, the accelerator sensor, the battery state-of-charge detection device, the continuously variable transmission, the engine, and the electric motor, the control unit comprising a target driving-torque calculation section which calculates a target driving torque on the basis of the vehicle speed and the accelerator operating amount, a target generated-electric-energy calculation section which calculates a target generated electric energy on the basis of a deviation of the state of charge of the battery from a desired state of charge, a target engine-speed calculation section which calculates a target engine speed needed to realize the vehicle speed, the target driving torque and the target generated electric energy at a lowest fuel consumption, considering an efficiency of each of the engine, the electric motor, and the power-transmission mechanism, a target torque calculation section which calculates a target engine torque of the engine and a target motor torque of the electric motor, both needed to realize the target driving torque and the target generated electric energy, a transmission ratio control section which controls a transmission ratio of the continuously variable transmission so that the engine speed is adjusted to the target engine speed, an engine torque control section which controls the engine so that torque produced by the engine is adjusted to the target engine torque, and a motor torque control section which controls the electric motor so that torque produced by the electric motor is adjusted to the target motor torque.
According to another aspect of the invention, a driving force control system for an automotive vehicle using driving torque produced by an electric motor for propulsion, and including a battery giving and receiving electricity to and from the electric motor and a power-transmission mechanism having at least a continuously variable transmission for transmitting the driving torque therevia to drive wheels, the system comprising a vehicle speed sensor detecting vehicle speed, a motor speed sensor detecting a motor rotational speed of the electric motor, an accelerator sensor detecting an accelerator operating amount, and a control unit being configured to be electrically connected to the vehicle sensor, the motor speed sensor, the accelerator sensor, the continuously variable transmission, and the electric motor, the control unit comprising a target driving-torque calculation section which calculates a target driving torque on the basis of the vehicle speed and the accelerator operating amount, a target motor-rotational-speed calculation section which calculates a target motor rotational speed needed to realize the vehicle speed and the target driving torque at a lowest electric power consumption, considering an efficiency of each of the electric motor and the power-transmission mechanism, a target torque calculation section which calculates a target motor torque of the electric motor needed to realize the target driving torque, a transmission ratio control section which controls a transmission ratio of the continuously variable transmission so that the motor rotational speed is adjusted to the target motor rotational speed, a motor torque control section which controls the electric motor so that torque produced by the electric motor is adjusted to the target motor torque.
According to a further aspect of the invention, a driving force control system for an automotive vehicle using driving torque produced by at least one of an internal combustion engine and an electric motor for propulsion, and including a battery giving and receiving electricity to and from the electric motor, a clutch disposed between the engine and electric motor, and a power-transmission mechanism having at least a continuously variable transmission for transmitting the driving torque therevia to drive wheels, and capable of selecting one of application of driving torque produced by the engine, application of driving torque produced by the electric motor, and application of driving torque produced by the engine and the motor depending on whether the clutch is in an engaged state or in a disengaged state, the system comprising a vehicle speed sensor detecting vehicle speed, an engine speed sensor detecting engine speed of the engine, a motor speed sensor detecting a motor rotational speed of the electric motor, an accelerator sensor detecting an accelerator operating amount, a battery state-of-charge detection device detecting a state of charge of the battery, and a control unit being configured to be electrically connected to the vehicle sensor, the engine speed sensor, the motor speed sensor, the accelerator sensor, the battery state-of-charge detection device, the continuously variable transmission, the engine, and the electric motor, the control unit comprising a target driving-torque calculation section which calculates a target driving torque on the basis of the vehicle speed and the accelerator operating amount, a target generated-electric-energy calculation section which calculates a target generated electric energy on the basis of a deviation of the state of charge of the battery from a desired state of charge, a target engine-speed calculation section which calculates a target engine speed needed to realize the vehicle speed, the target driving torque and the target generated electric energy at a lowest fuel consumption, considering an efficiency of each of the engine, the electric motor, and the power-transmission mechanism, a target motor-rotational-speed calculation section which calculates a target motor rotationa
Deguchi Yoshitaka
Kawabe Taketoshi
Kuroda Kouichi
Muramoto Itsuro
Cuchlinski Jr. William A.
Foley & Lardner
Marc-Coleman Marthe
Nissan Motor Co,. Ltd.
LandOfFree
Driving force control system for automotive vehicle does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Driving force control system for automotive vehicle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Driving force control system for automotive vehicle will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2513703