Solid material comminution or disintegration – Apparatus – Loose grinding body comminutor
Reexamination Certificate
2002-03-21
2003-12-02
Husar, John M. (Department: 3725)
Solid material comminution or disintegration
Apparatus
Loose grinding body comminutor
C241S171000, C241S179000
Reexamination Certificate
active
06655617
ABSTRACT:
TECHNICAL FIELD
This invention relates to a drive system for a tube mill having a rotatably mounted grinding tube with a grinding stock feed and having a discharge cone in the shape of a truncated cone floatingly arranged outside the grinding tube mounting at the discharge end of the grinding tube. The discharge cone is closed at its small diameter by an end wall and has a plurality of discharge openings distributed about its circumference for the discharge of the grinding stock and of the mill gas, which discharge openings are enclosed by a stationary stock discharge housing.
BACKGROUND OF THE INVENTION
For the driving of rotary drums such as, for example, tube mills, it is known to mount on the outer circumference of the drum, in rotationally rigid fashion, a ring gear having a T-shaped profile in cross section and with teeth engaged by one or two drive pinions. A rotary drum drive of this type is shown in European patent number 0 175 109 published Jan. 30, 1990 for a Rotary Drum. Flexures of the drum can lead to drum curvatures, which also in combination with various thermal expansions, lead to relative displacements and/or inclinations of the tooth flanks with nonuniform load behavior over the tooth face width, which is detrimental in terms of force transmission, especially when the diameter of the ring gear is, as has been the case heretofore, larger than the diameter of the grinding tube. The large-diameter ring gears are usually assembled from two or more parts, so that the above-cited problems of the ring-gear drive can be further increased by pitch errors of the ring gear.
The so-called central drive shown in European patent number 0 184 326 published Jan. 18, 1989 avoids the conventional ring-gear drive in tube mills. A discharge cone in the shape of a truncated cone is floatingly arranged outside the grinding-tube mounting at the grinding-stock discharge end of the milling-grinding tube, which contains the grinding stock as well as the grinding bodies. The discharge cone is closed by an end wall at its small diameter, which end wall is engaged at the center by the drive shaft of the central drive. The discharge cone has openings distributed about the circumference for the discharge of the grinding stock and of the mill gas. The grinding-stock and mill-gas discharge openings are enclosed by a stationary stock discharge housing into which the ground stock falls downward and is discharged at the bottom while the mill gas, laden with fines, is withdrawn from the stationary stock discharge housing at the top. If this known tube mill were retrofitted with a ring-gear drive on account of necessity, the ring gear would be mounted on the outer circumference of the drum, as was heretofore usual, whereupon the above-described problems resulting from the large diameter of the ring gear would arise again.
OBJECTS OF THE INVENTION
It is an object of the invention to create for a tube mill a simply and compactly built drive system whose force transmission is no longer threatened by flexures and other deformations of the grinding tube.
SUMMARY OF THE INVENTION
In the drive system according to the invention, a drive gear is mounted on the truncated-cone-shaped discharge cone attached at the grinding-stock discharge end of the grinding tube, the drive gear having a diameter not greater than the diameter of the grinding tube. The torque transmitting drive wheel thus has a diameter maximally as large as the grinding-tube diameter, preferably smaller, so that the drive gear differs markedly in diameter from the large ring gears of the known ring-gear drives. In the drive system according to the invention, this comparatively small drive gear is flanged onto the small diameter of the discharge cone in simple fashion. According to an exemplary embodiment of the invention, the small-diameter drive gear is a ring gear which is distinguished first by light weight and comparatively low fabrication cost. The ring gear can be advantageously fabricated in one piece, so that pitch errors, such as occur in the usual large, multi-part ring gears, are avoided. Flexures and other deformations of the grinding tube scarcely manifest themselves on the small-diameter drive gear, so that the drive system according to the invention preserves the force transmission/torque transmission and uniformally distributes the load over the width of the tooth face.
The drive wheel flanged onto the small diameter of the discharge cone of the tube mill is preferably a one-piece ring gear into which at least one drive pinion comes into tooth profile engagement. In order to insure uniform load behavior over the tooth face width, it may be advantageous to make the drive pinion or drive pinions self-aligning in order to compensate for any possible alignment error of the ring gear and/or of the pinions. Furthermore, the ring gear can be kept narrow because the surface of the ring gear can be hardened, for example by induction hardening.
According to a further feature of the invention, the drive gear arranged on the small diameter of the discharge cone need not necessarily be made as a ring gear; the drive wheel can instead bear pole pieces and form the rotor of an electric motor, which rotor is surrounded in contact-free fashion by a stator of a gearless ring-motor drive. The ring motor that comes about in this way, because its rotor and stator are comparatively small in diameter, is correspondingly simple and economical to build. At the same time, the ring-motor drive has a continuously variable speed, and the speed is to be optimally adapted to the properties of the grinding stock as well as the mill-classifier grinding system in which the tube mill is employed.
The ring gear drive, the ring gear and the at least one driving pinion, are enclosed by a stationary ring-gear housing. Only a single ring seal is required between the lateral wall of the ring-gear housing facing toward the discharge cone and toward the small outer diameter of the discharge cone, because the other lateral wall of the ring-gear housing is completely closed. By virtue of the good sealability of the ring-gear housing, oil leaks are minimized in the case of circulating oil lubrication of the ring-gear drive, and even oil-splash lubrication would be possible.
In the drive system according to the invention, the flange arranged on the small diameter of the discharge cone can be made as a multifunction flange, in that the mill drive according to the invention can be retrofitted with a central drive, which then engages on the small diameter of the discharge cone or on its end wall.
REFERENCES:
patent: 2486477 (1949-11-01), Kennedy
patent: 2511742 (1950-06-01), Shafer
patent: 2513413 (1950-07-01), Huszar
patent: 3078050 (1963-02-01), Hardinge
patent: 0 184 326 (1989-01-01), None
patent: 0 175 109 (1990-01-01), None
Aufsfeld Norbert
Hagedorn Alexander
Husar John M.
KHD Humboldt Wedag AG
Nexsen Pruet Jacobs & Pollard, LLC.
Schwab Charles L.
LandOfFree
Drive system for a tube mill does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Drive system for a tube mill, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Drive system for a tube mill will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3182790