Electrical generator or motor structure – Dynamoelectric – Rotary
Reexamination Certificate
2001-02-14
2003-07-01
Lam, Thanh (Department: 2834)
Electrical generator or motor structure
Dynamoelectric
Rotary
C310S092000, C310S07500D
Reexamination Certificate
active
06586852
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a drive system, in particular for a vehicle, including an electric machine, by means of which a shaft can be driven to rotate and/or electrical energy can be obtained when the shaft rotates. The electric machine has a stator arrangement with a stator interaction region and a rotor arrangement with a rotor interaction region, the rotor interaction region being coupled or capable of being coupled to the shaft for common rotation by means of a carrier arrangement. The drive system further includes a torsional-vibration damper arrangement with a primary side and a secondary side which can rotate, counter to the action of a damper element arrangement, about an axis of rotation with respect to the primary side.
2. Description of the Related Art
A drive system of this type is known, for example, from DE 199 14 376 A1. In this drive system, the torsional-vibration damper arrangement is designed so that it is either bolted onto a drive shaft together with the carrier arrangement for the rotor interaction region, or so that one of the primary side and the secondary side is linked to the carrier arrangement for common rotation or, via this arrangement, is connected in a rotationally fixed manner to the drive shaft. The result is a structure which takes up a relatively large amount of space, but this causes difficulties in particular when drive systems of this type are integrated in a drive train of small motor vehicles.
SUMMARY OF THE INVENTION
The object of the present invention is to refine a drive system of the generic type in such a manner that the space which it takes up can be reduced.
According to the invention, this object is achieved by a drive system, in particular for a vehicle, comprising an electric machine, by means of which a shaft can be driven to rotate and/or electrical energy can be obtained when the shaft rotates. The electric machine includes a stator arrangement with a stator interaction region and a rotor arrangement with a rotor interaction region, the rotor interaction region being coupled or capable of being coupled to the shaft for common rotation by means of a carrier arrangement. The drive system further includes a torsional-vibration damper arrangement with a primary side and a secondary side which can rotate, counter to the action of a damper element arrangement, about an axis of rotation with respect to the primary side.
In this system, it is furthermore provided that the carrier arrangement forms at least a part of the primary side.
The integration of functions, i.e. the incorporation of the carrier arrangement or a section thereof into the torsional-vibration damper arrangement, makes it possible to save on the number of components, and the electric machine and torsional-vibration damper arrangement assemblies can be positioned closer together, with the advantage that the overall size or length of a system of this type can be reduced compared to systems which are known from the prior art.
To further minimize the space which has to be made available, the carrier arrangement has its region which forms at least a part of the primary side located substantially radially inside the stator arrangement and preferably axially overlaps this arrangement at least in regions.
By way of example, the carrier arrangement may form a part of the primary side which serves to support the forces of the damper element arrangement.
To ensure symmetrical transmission of forces without the risk of primary side and secondary side becoming misaligned with respect to one another, the primary side has two force-supporting regions which, at least in regions, lie at an axial distance from one another, and the carrier arrangement forms one of the force-supporting regions. This can be achieved in a manner which is simple to produce by the fact that the primary side has two cover disk regions which form the force-supporting regions, and that the carrier arrangement forms one of the cover disk regions. In this case, it is furthermore advantageously provided that the secondary side has a central disk element which engages axially between the two force-supporting regions of the primary side.
In an alternative embodiment, the carrier arrangement, in a region which extends substantially axially and radially outside the damper element arrangement, has at least one first force-supporting region for the damper element arrangement. The secondary side has a second force-supporting region, which extends substantially axially, associated with at least one first force-supporting region of the primary side. In an embodiment of this type, the at least one first force-supporting region and the associated second force-supporting region preferably lie between the end regions of two damper elements which follow one another in the circumferential direction.
In design terms, this embodiment can be made particularly simple by the carrier arrangement having a carrier element which forms the part of the primary side, that the secondary side having a driver element which has the at least one second force-supporting region, and the carrier element and the driver element together forming a rotation-angle limitation for the torsional-vibration damper arrangement. In addition to its function of being able to transmit torque in damping mode, a further integration of function is provided in this case, namely that of preventing excessive compression of the damper element arrangement as a result of the rotation-angle limitation arrangement becoming active.
To achieve further integration of functions into assemblies or components which are already present, the secondary side can be supported in the radial direction and/or in the axial direction on the carrier arrangement. In this case, the central disk element is preferably supported on the carrier arrangement, preferably via a radial bearing arrangement.
With regard to the support of the primary side with respect to the secondary side, a bearing region for axially and radially supporting the secondary side with respect to the primary side may be formed on the carrier arrangement.
To connect the two cover disk regions in a simple manner and without the insertion of additional components, one of the cover disks has a connecting section for connection, preferably by welding, to the other cover disk region. This extends axially toward the other cover disk region and preferably radially outward.
If the connecting section lies substantially radially inside the stator arrangement and axially overlaps the stator arrangement, this part of the carrier arrangement can simultaneously serve to axially bridge the stator arrangement. The torsional-vibration damper arrangement can therefore be positioned even closer to the electric machine or is arranged substantially radially inside the stator arrangement thereof or axially overlaps this arrangement.
To produce a simple connection between the two cover disk regions, the other cover disk region, by means of a connecting section thereof, preferably extends axially toward the carrier arrangement and preferably radially outward.
To obtain a stable axial support between primary side and secondary side, the secondary side can be axially supported on the carrier arrangement via the second cover disk region. In this case, the secondary side is preferably axially supported on the secondary cover disk region in or close to a transition between a section which extends substantially radially and a connecting section which extends axially and preferably radially outward toward the carrier arrangement. The axial support in this connecting region produces an axially highly stable, i.e. relatively unyielding support, since in particular even when produced from sheet-metal material, the second cover disk region is very deformation-resistant in this transition region.
For axial support, the secondary side can be supported on a second cover disk element, with an axial bearing arrangement, preferably a slide bearing arrangement, arranged between them.
In the drive sys
Geiger Martin
Schierling Bernhard
Cohen & Pontani, Lieberman & Pavane
Lam Thanh
Mannesmann Sachs AG
LandOfFree
Drive system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Drive system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Drive system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3069495