Drive mechanism having a gas bearing operable under a...

Electrical generator or motor structure – Dynamoelectric – Rotary

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C384S012000, C310S012060, C414S676000, C034S092000

Reexamination Certificate

active

06285102

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to drive mechanisms and, more particularly, to a drive mechanism which drives a movable member provided in a vacuum chamber such as a process chamber used for a semiconductor manufacturing process.
2. Description of the Related Art
In the manufacturing processes of semiconductor devices, liquid display devices (LCDs) or plasma display devices, accurate movement and positioning of a work piece such as a semiconductor wafer must be achieved under the vacuum or negative pressure (partial vacuum) environment. Accordingly, a handling device handling a work piece under the vacuum or negative pressure environment must be provided with a movable unit such as a conveyor arm which can accurately move and position the work piece. Such a handling device operated under the vacuum or negative pressure requires a special drive mechanism for driving the movable unit including a special bearing which movably supports the movable unit. Conventionally, a ball bearing or a roller bearing is used as a bearing for supporting the movable unit in a vacuum chamber.
Japanese Patent Publication No. 6-49529 discloses a method using a magnetic floating mechanism to convey an object within a vacuum chamber. According to the method, a work piece such as a wafer is mounted on a conveyor arm that floats within the vacuum chamber by being supported by a magnetic force applied by electromagnets provided outside the vacuum chamber. The conveyor arm conveys the work piece within the vacuum chamber. Accordingly, the conveyor arm does not produce dust or particles within the vacuum chamber since the conveyor arm can move within the vacuum chamber in the non-contact manner. However, said patent document does not disclose the floating mechanism of the conveyor arm and the method for controlling the floatation of the conveyor arm.
Japanese Laid-Open Patent Application No. 62-88528 discloses an X-Y stage, which uses an air bearing for floatation of a movable unit on a cushion of air and a linear motor for driving the movable unit. The stage is formed on the crossing part of two orthogonal cross guides. Each of the cross guides is provided with air bearings on opposite ends and a liner motor formed along each cross guide. However, this patent document does not disclose the specific structure of the air bearings and method for controlling the floating force achieved by the air bearings. A structure of a conventional air bearing is disclosed in Japanese Laid-Open Utility Model Application No. 60-162731.
Conventionally, a ball bearing or a roller bearing is used as a bearing for supporting a movable unit. However, when a ball bearing or a roller bearing is operated in a vacuum chamber, the pressure in the vacuum chamber may be increased due to gas discharged from the lubricant provided in the bearing. Additionally, the lubricant may scatter within the vacuum chamber due to rotation of the balls or rollers in the bearing, which contaminates the environment within the vacuum chamber. Further, friction in the bearing causes a delay in a start of movement and inaccuracy in a stop position. There is a further problem in that a high-speed operation cannot be performed since a vibration due to sliding must be prevented so as to safely hold and move a work piece.
As mentioned above, the method disclosed in Japanese Patent Publication No. 6-49529 does not use a mechanical contact bearing such as a ball bearing or a roller bearing. However, since the conveyor arrangement disclosed in Japanese Patent Application No. 6-49529 does not disclose the method of flotation control of the conveyor arm, the conveyor arm may contact the inner bottom surface of the vacuum chamber.
A gas bearing such as an air bearing is popular for a movable unit operated under a normal or atmospheric pressure. However, there has been no suggestion to apply a gas bearing to a negative pressure environment. Actually, neither the above-mentioned Japanese Laid-Open Patent Application No. 62-88528 nor Japanese Laid-Open Patent Application No. 60-162731 considers the use of a gas bearing under a negative pressure environment. That is, the gas bearing disclosed in those patent documents is generally arranged for use under a normal pressure. Therefore, the gas bearing so disclosed is unusable under a negative pressure environment since the gas bearing exhausts some amount of air or gas, which could raise the pressure thus eliminating the negative pressure environment.
As mentioned above, there has been no suggestion as to a bearing that enables movement and positioning of a movable unit in a conveyor system operated under a negative pressure environment. If a ball bearing or a roller bearing is used, the above-mentioned problems will rise.
Additionally, the conventional floating system using a magnetic force does not provide a lift control of a movable unit. For example, in the method disclosed in the above-mentioned Japanese Patent Application No. 6-49529, there may be a case in which the lift of the conveyor arm fluctuates and cannot be maintained at a constant level, or the conveyor arm vibrates. Additionally, if the movable unit is lifted in excess, an appropriate drive control cannot be performed, and a high-speed motion and a quick response cannot be achieved.
SUMMARY OF THE INVENTION
It is a general object of the present invention to provide an improved and useful drive unit in which the above-mentioned problems are eliminated.
A more specific object of the present invention is to provide a drive mechanism for driving a movable element, which drive mechanism can be operated under a negative pressure environment achieving an accurate movement and positioning of the movable unit.
Another object of the present invention is to provide a floating mechanism for floating a movable element with a stable floating height above a stationary element.
In order to achieve the above-mentioned objects, there is provided according to one aspect of the present invention a drive mechanism which comprises: a movable element situated inside a chamber which is set to a predetermined negative pressure environment; a gas bearing arrangement movably supporting the movable element relative to a stationary element, the gas bearing arrangement operating under the predetermined negative pressure environment inside the chamber; and a drive arrangement driving the movable element from outside the chamber.
According to the present invention, since the gas bearing arrangement is used, the movable element can be moved and/or rotated along the stationary element at a high speed without friction and vibration. The motion of the movable element may include one-dimensional motion, two-dimensional motion and three-dimensional motion. Additionally, the movable element carrying an object does not vibrate. Further, since there is no friction such as static friction, the movable element can achieve a quick response when starting and stopping.
Additionally, there is provided according to another aspect of the present invention a drive mechanism which comprises: a chamber providing a predetermined negative pressure environment, the chamber having an inner surface; a movable element situated inside the chamber, the movable element having an opening from which a gas is ejected so that the movable element floats on a cushion of gas above the inner surface of the chamber; and a drive arrangement driving the movable element.
According to this invention, since the gas bearing arrangement is used, the movable element can be moved and/or rotated at a high speed without friction and vibration along the inner surface of the chamber. The motion of the movable element may include one-dimensional motion, two-dimensional motion and three-dimensional motion. Additionally, the movable element carrying an object does not vibrate. Further, since there is no friction such as static friction, the movable element
10
can achieve a quick response when starting and stopping.
Additionally, there is provided according to another aspect

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Drive mechanism having a gas bearing operable under a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Drive mechanism having a gas bearing operable under a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Drive mechanism having a gas bearing operable under a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2476587

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.