Land vehicles: bodies and tops – Bodies – Trunk lids
Reexamination Certificate
2002-09-25
2004-09-14
Engle, Patricia L. (Department: 3612)
Land vehicles: bodies and tops
Bodies
Trunk lids
C296S193110, C296S146800, C296S136040, C049S340000, C049S341000, C049S359000
Reexamination Certificate
active
06789834
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to a drivable flap hinge for connecting a flap, such as a front hood or a trunk lid, to a body of an automobile in an articulated manner, including a first mounting part for fixing to the flap, a second mounting part for fixing to the body, at least one link, which is pivotably arranged on at least one of the two mounting parts by means of a joint, and a driving motor, which is drive-connected to a joint pin of the joint.
DE-A-197 44 908 describes a drive apparatus for a front or tail flap of an automobile, comprising a flap hinge, in which a joint pin of a joint corresponds to the transmission output shaft of a driving motor, which, like the joint, is arranged in the region of a body-side mounting part. The particular disadvantage of this apparatus is the space requirement for the motor in the region of the body-side mounting parts, since they are generally arranged as far out as possible and thus allow a motor to be mounted only under very unfavorable conditions, if at all, e.g. outside the trunk, within the wing, for which purpose the shaft is passed through the metal of the body and has to be sealed and there is virtually no protection against dirt and water.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a drivable flap hinge, which advantageously allows the motorized pivoting of a front or tail flap of an automobile
The present invention provides a drivable flap hinge for connecting a flap to a body of an automobile in an articulated manner. The flap hinge includes a first mounting part for fixing to the flap, a second mounting part for fixing to the body, at least one first link pivotably arranged on at least one of the first and second mounting parts using a joint including a joint pin, and a driving motor. The driving motor is drive-connected to the joint pin, and the driven joint pin connects the first mounting part and the at least one first link.
The drivable flap hinge according to the invention enables a flap pivotally connected to the vehicle body, in particular a front hood or a trunk lid, to be moved backward and forward between a closed position and an open position, for which purpose the driving motor is arranged essentially outside the region of the body-side mounting part, thus allowing the body-side mounting part to be mounted as far as possible to the outside on the body. It is not necessary to mount the driving motor within the wing, which makes access to it difficult and involves drilling through the body. Moreover, advantageous forces and moments act in the arrangement according to the invention, enabling the driving motor to be of smaller configuration and requiring less energy to be supplied.
The flap hinge according to the invention can be employed with a large number of flaps on automobiles, in particular with front hood or trunk lids, but also, in principle, with other flaps mounted on a vehicle for example with lids of convertible-top compartments or the like.
A further link is preferably provided, being connected to the first and the second mounting part in an articulated manner, so that the two links define a four-joint linkage, by means of which the two mounting parts are pivoted relative to one another.
According to a first preferred refinement of the flap hinge, the driving motor is arranged as an extension of the first, flap-side mounting part and drives a joint pin fixed in the link. In this case, the driving motor can be positioned at an inconspicuous position in the region of the flap, in particular against or in the vicinity of the flap-side mounting part without the need to provide a special installation space for this purpose.
According to another preferred refinement, the driving motor is arranged as an extension of the link and drives a joint pin fixed in the first, flap-side mounting part. Through its arrangement as an extension of the link or parallel to the link, the driving motor can advantageously follow the latter's pivoting motion during the opening of the flap without obstructing the pivoting motion of the flap hinge as a whole. Moreover, the driving motor can be arranged on the inward-facing side of the link, and the body-side mounting part can thus still be arranged as far out as possible on the body.
Provision is preferably made for an opposite end of the driving motor from the driven joint pin, which is connected in a rotationally fixed manner to the body-side mounting part, to be supported in an articulated manner on the second mounting part. This makes it possible to mount the driving motor to the outside of the link on whose joint the driving motor engages, but nevertheless to do it in a pivotable manner. In a particularly preferred variant, this enables the link itself to be eliminated, with the result that the driving motor with its associated housing has an extent designed to correspond to a link, which allows it to be mounted in an articulated manner at its end remote from the driven joint pin in such a way that pivoting past another link is possible, for example, thus making it possible to eliminate a separate part as a link. In this case, the driving motor itself is designed as a link.
According to a preferred development, it is possible, in the case of support on the body-side mounting part, for the same driving motor that already drives the joint pin likewise to drive a further joint pin in the region of its pivotable connection to the body-side mounting part.
A gear, which performs an increase or reduction in the rotational speed of the motor, can expediently be arranged between the driving motor and the driven joint pin. This advantageously makes it possible, for example, to provide a conventional electric motor as a standard part, which is adapted by means of the gear, as a separate subassembly, to the torques and forces acting on the driven joint pin. The joint pin then expediently has a circumferentially toothed portion, which meshes with a circumferentially toothed drive wheel of the gear.
According to yet another preferred refinement, provision is made for the driving motor to drive the hinges arranged on both sides of the flap, thus eliminating synchronization of the two drives for respective flaps driven by a motor in the case of an electric flap drive and furthermore ensuring that opening and closing of the flap takes place without tilting. For this purpose, the driving motor is optionally arranged on one flap hinge and connected to the other flap hinge by a shaft.
Preferably, however, the driving motor is arranged underneath the flap, expediently close to the pivoting axis, both flap hinges being connected to the driving motor by a shaft. Particularly suitable for this purpose is a flexible shaft, which has a certain play in its rotation and thereby allows coupling to the flap hinge while simultaneously being capable of compensating for bending of the flap due to its own weight or dynamic stresses.
It has to be understood that this arrangement can also be used to actuate the flap in the case of a single-joint hinge.
A spring energy store is preferably provided to assist the driving motor at least temporarily during the opening motion, especially in the range of the initial pivoting of the flap. It is thereby possible to assist the opening travel, in particular, which is intensive in terms of power owing to unfavorable torque conditions and is therefore associated with a slow pivoting motion. The spring energy store can be designed as a gas-pressure spring, which extends to assist the flap hinge, or as a leaf spring or in some other suitable configuration. According to a particularly preferred variant, the spring energy store can be integrated into the link, and can be loaded by means of the driving motor during the closure of the flap hinge.
The driving motor expediently has a watertight enclosure to protect its components. The driving motor is preferably provided with a multi-plate clutch or some other comparable clutch member in order to allow manual actuation of the flap despite failure of the motor.
Fu
Davidson Davidson & Kappel LLC
Edscha AG
Engle Patricia L.
LandOfFree
Drivable flap hinge does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Drivable flap hinge, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Drivable flap hinge will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3201976