Drip irrigation hose with emitters having different...

Fluid sprinkling – spraying – and diffusing – Conduit or nozzle attached irrigation-type decelerator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C239S001000

Reexamination Certificate

active

06308902

ABSTRACT:

BACKGROUND OF THE INVENTION
Drip irrigation systems have come into widespread use in the agricultural area. Drip irrigation systems supply water at a slow, controlled rate to the root zone of the particular plants being irrigated. Typically, drip irrigation is accomplished by providing a low volume water outlet at each plant that permits a limited dripping of water directly to the root zone of the particular plant. Because evaporation, runoff, overwatering, and watering beyond the root zone are eliminated, substantial water and nutrient savings are realized. In addition, drip irrigation reduces contaminants to the water table by enabling the farmer to supply only enough water and fertilizer to reach the plants, reducing excess water that would run off and contaminate the water table below.
Drip irrigation hoses tend to be relatively long to be able to extend across a field. As the water travels along the hose away from the water source, the pressure of the water decreases. Thus, the water pressure at the beginning of the hose (near the water source) is greater than that at the far end of the hose. Because the drip rate of the hose is a function of the water pressure, the drip rate at the beginning of the hose tends to be greater than at the end of the hose. Other field conditions, such as elevation, also affect the pressure, and thus the drip rate, along the length of the hose. However, it is often desirable to have a relatively uniform drip rate along the length of the hose. Moreover, other varying field conditions, such as soil type and drainage, create a need to have different drip rates throughout the field to compensate for the different field conditions.
One proposed solution to the pressure variation problems is to incorporate pressure-compensating emitters into the hoses to reduce the effect of the pressure difference over the length of the hose on the drip rate along the length of the hose. Such hoses are described in U.S. patent application No. 09/308,060, entitled “Pressure-Compensating Drip Irrigation Hose and Method for Its Manufacture”. However, although these designs address certain pressure-compensation issues, they do not provide a way to provide predetermined drip rates that vary along the hose.
SUMMARY OF THE INVENTION
The present invention is directed to drip irrigation hosing having a series of emitters that differ in geometry to provide different predetermined discharge rates throughout a field. This invention has value to the irrigation designer in that it allows the designer to select emitter characteristics depending on the position of the emitter in the field. For instance, the position of the emitter in the field may subject it to a different supply pressure than if it were at a different location in the field. The supply pressure at different locations will vary as ground elevation changes or as the distance between the main water supply and the emitter increases. Changes in supply pressure affect discharge rate and uniformity of water distribution if all emitters are identical. Therefore it is desirable to vary the emitter discharge to compensate for changes in topography. Additionally it is desirable to vary the discharge rate of the emitters as soil type and drainage change with field position. The invention can be used for all types of drip irrigation hosing, including collapsible tubing, regardless of method of manufacturing, seamless, folded or otherwise, and hard hose.
In one embodiment, the invention is directed to a drip irrigation hose having a water supply passage and a plurality of flow regulating channels manufactured into the hose that are smaller than the water supply passage. The flow regulating channels each comprise a predesignated geometry to provide a desired discharge rate at a given pressure, an inlet section comprising one or more openings connecting the water supply passage to that flow regulating channel, and an outlet section comprising one or more openings connecting that flow regulating channel to the exterior of the hose. The plurality of flow regulating channels have at least two different geometries to provide at least two different discharge rates at the given pressure.
In another embodiment, the invention is directed to a method for providing generally uniform irrigation in a field. A hose is manufactured having first and second ends, a water supply passage and a plurality of flow regulating channels as described above. The flow regulating channels nearer the first end of the hose have geometries different from the geometries of the flow regulating channels nearer the second end of the hose so that, at a given pressure, the flow regulating channels nearer the second end have a greater discharge rate than the flow regulating channels nearer the first end of the hose. The hose is placed in the field with the first end of the hose connected to a water supply source. Water is introduced through the hose, whereby the discharge rates of the flow regulating channels are generally uniform over the length of the hose. This method eliminates difference is discharge rates due to pressure differences at the different flow regulating channels due to distance from the water supply source.
In another embodiment the invention is directed to a method for providing generally uniform irrigation in a field having different elevations. This method eliminates differences in discharge rates due to pressure differences at the different flow regulating channels due to elevation differences of the flow regulating channels. In accordance with the method, the topography of the field is mapped. A hose is manufactured having first and second ends, a water supply passage and a plurality of flow regulating channels, as described above. The plurality of flow regulating channels have at least two different geometries to provide at least two different discharge rates at the given pressure. The hose is placed in the field so that the flow regulating channels that produce higher discharge rates are positioned at higher elevations than the flow regulating channels that produce lower discharge rates. Water is introduced through the hose. The discharge rates of the flow regulating channels are generally uniform over the length of the hose.
In another embodiment the invention is directed to a method for irrigating a field having different soil conditions, such as different soil types or drainage differences. The method comprises manufacturing a hose having first and second ends, a water supply passage and a plurality of flow regulating channels, as described above. The plurality of flow regulating channels have at least two different geometries to provide at least two different discharge rates at the given pressure. The hose is placed in the field so that the flow regulating channels having higher discharge rates are positioned near soil conditions where a higher discharge rate is desired, and flow regulating channels having lower discharge rates are positioned near soil conditions where a lower discharge rate is desired. Water is introduced through the hose.
In another embodiment, the invention is directed to an improved method for manufacturing a drip irrigation hose having a water supply passage and a plurality of flow regulating channels having a cross-sectional area smaller than that of the water supply passage. The improvement comprises varying the geometries of the flow regulating channels so that the plurality of flow regulating channels have at least two different geometries to provide at least two different discharge rates at a given pressure.


REFERENCES:
patent: 4247051 (1981-01-01), Allport
patent: 4430020 (1984-02-01), Robbins
patent: 4534515 (1985-08-01), Chapin
patent: 4756339 (1988-07-01), Buluschek
patent: 4984739 (1991-01-01), Allport
patent: 5163622 (1992-11-01), Cohen
patent: 5246164 (1993-09-01), McCann et al.
patent: 5458712 (1995-10-01), DeFrank
patent: 5636797 (1997-06-01), Cohen
patent: 5855324 (1999-01-01), DeFrank et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Drip irrigation hose with emitters having different... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Drip irrigation hose with emitters having different..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Drip irrigation hose with emitters having different... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2557040

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.