Wells – Processes – Separating material entering well
Reexamination Certificate
1999-04-16
2002-04-09
Neuder, William (Department: 3672)
Wells
Processes
Separating material entering well
C166S054000, C166S105500, C405S055000, C405S059000
Reexamination Certificate
active
06367547
ABSTRACT:
TECHNICAL FIELD
This invention relates generally to a downhole apparatus utilized to substantially separate, while downhole, a formation fluid from a subterranean well into constituent portions, and in particular to a downhole separation apparatus for producing and then conveying petroleum products to the well surface separately from undesirable products that are returned to a formation.
BACKGROUND OF THE INVENTION
Oil and/or gas wells quite often pass through a productive strata whose yield, besides including oil, gas and other valuable products also includes undesirable and unwanted denser constituents such as salt water. In oil well production operations, relatively large quantities of water are frequently produced along with the valuable petroleum products. This is particularly true during the latter stages of the producing life of a well. Handling this water at the surface represents a significant expense in lifting, separation, and disposal.
Various methods have been employed for extracting the valuable petroleum yield from the denser and unwanted constituents. Some have involved the pumping of the total yield to the surface of the well and then using various methods for separating the valuable yield from the unwanted portion of the yield. In addition, the unwanted portion of the yield, after having been pumped to the well surface and separated, has been then pumped downwardly again through a remote well bore into a disposal layer.
In some oil wells, the unwanted denser constituents can amount to as much as 80% to 90% of the total formation yield. Accordingly, to obtain a given volume of valuable petroleum yield from the well, eight or nine times the volume of the valuable yield must first be pumped to the surface of the well and then separated from the unwanted portion of the formation yield. As set forth above, this process can be very slow and expensive. Although the problem of producing substantially water-free oil from a reservoir may occur at any stage in the life of an oil well, the proportion of water to valuable yield generally increases with time as the oil reserves decline. Ultimately, when the lifting costs of the combined petroleum and water constituents exceed the value of the recovered oil, abandonment of the well becomes the only reasonable alternative.
Many procedures have been tried for producing water-free oil from a formation that has a large quantity of water. For example, the oil and water produced are pumped or otherwise flowed together to the surface where they are then treated to separate the petroleum from the water. Since the volume of the water is usually much greater than that of the oil, the separator must handle large volumes of fluid and therefore is large and accordingly expensive. Moreover, the water produced contains mineral salts which are extremely corrosive, particularly in the presence of air. Also, flowing the oil and water together upwardly through the well sometimes forms emulsions that are difficult to break. Such emulsions frequently must be heated in order to separate them even when in the presence of emulsion treating chemicals. The heating of the large amount of water, as well as the small amount of oil, requires an expenditure of large amounts of energy, reducing the net equivalent energy production from the well
Water produced from deep formations within the earth frequently contains large amounts of natural salts. For this reason, the salt water brought to the surface cannot be disposed of by allowing it to flow into surface drains or waterways. Relatively small volumes of salt water can sometimes be disposed of by drainage into a slush pit or evaporation tank. The required disposal method for large volumes of salt water, however, is to introduce the water into a subsurface formation. This requires a disposal well for receiving the produced salt water.
By returning the water to the same formation in this manner, the water is disposed of and also acts more or less as a re-pressurizing medium or drive to aid in maintaining the bottom hole pressure and driving the well fluids toward the producing well. But, in those areas where producing wells are widely separated, the cost of drilling disposal wells for each producing well is prohibitive. In such instances it is necessary to lay a costly pipeline-gathering network to bring all of the produced water to a central location, or alternatively, to transport the produced water by trucks or similar vehicles. Regardless of the method for transporting the waste salt water from a producing well to a disposal well, the cost of the disposal can be, and usually is, prohibitive.
Furthermore, fluids from subterranean reservoirs can have undesirable characteristics such as excessive pressure and being super-heated. If excessive pressure is present, then surface equipment, such as a choke manifold, must be installed to choke the flow pressure down to about 2,000 p.s.i. If a highly pressurized fluid depressurizes within a short amount of time, then a large portion of the gas is “flashed” in that a chemical reaction occurs. This reaction adversely affects the desirable petroleum yield from the formation yield. In general, both well seals and surface equipment suffer in the presence of excessive fluid pressure and heat. This equipment is expensive in terms of maintenance and capital costs. Thus, it is highly desirable to minimize these undesirable characteristics of the well flow before being brought to the surface.
Downhole separation has been utilized to a limited extent through the use of hydrocyclones, or combinations of mechanical pumps and gravity separation for achieving separation of production fluids into water and hydrocarbon components. An example of such a device is provided in U.S. Pat. No. 5,857,519, issued Jan. 12, 1999 to Bowlin et al., which recites a method and apparatus for the downhole disposal of a water component of a production fluid while using gas lift techniques to lift the hydrocarbon component. Separation of the water component from the production fluid occurs in the annulus between the well casing string and the well tubing string. The gas lifting technique uses gas lift valves spaced along the length of the casing string for high-pressure injection of gas into the tubing string to lift the hydrocarbon component. Disposal of the water fluids into an underlying formation is provided by a pump mechanism.
But previous devices have been limited to secondary recovery methods in which the natural pressure of a formation is waning. Secondary recovery methods, such as gas lift, or pump jacks, have additional energy requirements for bringing a production yield to the surface. Accordingly, the capacity for these devices to accommodate high production fluid flows is limited, and furthermore, generally requires additional hardware and equipment placed within the bore, restricting the effective inner diameter of a tubing string. A restricted inner diameter affects the ability for routine maintenance of a well below the separation device, as well as upkeep and maintenance of the pumps and hydrocyclones.
Accordingly, a need exists for a downhole separator that separates the valuable yield from a production yield, and that can leave the unwanted portion of the yield downhole. Also needed is a downhole device that can moderate high-pressure and high-temperature characteristics of the production yield. Additionally, a downhole separator is needed for allowing separation of production fluids into constituent portions from the primary recovery lifespan through the secondary and tertiary recovery lifespans of a well.
SUMMARY OF THE INVENTION
Provided is a downhole separator that separates the valuable yield from a production yield that can leave the unwanted portion of the yield downhole. The downhole separator of the present invention can also moderate high-pressure and high-temperature characteristics common to primary production flows, as well as provide downhole separation for secondary and tertiary recovery phases of a well lifespan.
An aspect of the present invention is a method
Schwendemann Kenneth L.
Towers Darrin N.
Halliburton Energy Service,s Inc.
Hawkins Jennifer M
Herman Paul I.
Murphy James J.
Neuder William
LandOfFree
Downhole separator for use in a subterranean well and method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Downhole separator for use in a subterranean well and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Downhole separator for use in a subterranean well and method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2927470