Radiant energy – Geological testing or irradiation – Well testing apparatus and methods
Reexamination Certificate
1998-04-23
2001-04-17
Hannaher, Constantine (Department: 2878)
Radiant energy
Geological testing or irradiation
Well testing apparatus and methods
C250S255000, C250S338100, C250S340000, C250S343000
Reexamination Certificate
active
06218662
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to the field of gas analysis downhole in a hydrocarbon producing well. More particularly, the present invention relates to a system for analyzing carbon dioxide concentration downhole in a borehole
Hydrocarbon producing wells contain numerous formation liquids and gases including methane, ethane, carbon dioxide, hydrogen sulfide, and other gaseous compounds. Deep wells produce fluids at extremely high temperatures. The detection and analysis of gas concentrations provides information useful in evaluating the commercial value of a hydrocarbon producing well. Numerous systems have been developed to evaluate borehole fluid composition and the relative gas concentrations in the borehole fluid.
In U.S. Pat. Nos. 5,167,149 to Mullins et al. (1992) and in U.S. Pat. No. 5,201,220 to Mullins et al. (1993), a borehole apparatus detected the presence of gas within a formation fluid sample. A light source transmitted light to an interface between the fluid sample and a flow line, and a detector array sensed reflected light rays having angles of incidences between the Brewster angle and the critical gas angle. A processor determined the percentage of gas by comparing the detected information to information stored in a data base. The processor also categorized the fluid sample as high gas, medium gas, and low gas.
A method for determining the quantity of dissolved gas in a sample was disclosed n U.S. Pat. No. 5,635,631 to Yesudas et al. (1997), wherein the pressure and volume of a sample were first measured. The sample pressure was changed by expanding he sample until the pressure/volume relationship was non-linear, and the sample was expanded to determine the point at which pressure was unchanged. A bubble point for the sample was determined, and the sample pressure and the bubble point volume was determined. The dissolved gas volume was then calculated by linearly scaling the bubble point volume and the extrapolated sample volume relative to the difference between the second volume and the bubble point volume.
Other systems have been disclosed to evaluate gas composition within a formation fluid. U.S. Pat. No. 4,994,671 to Safinya et al. (1991) disclosed a borehole logging tool for analyzing the composition of formation fluids. Specifically, the apparatus used near infrared spectral analysis to determine quantities of gas, water and oils in a hydrocarbon fluid. A light source emitted near infrared rays in a wavelength range between 0.3 and 2.5 microns, and a spectral detector sensed the spectrum of backscattered and transmitted rays. A data base stored the sensed data, and a processor determined the fluid composition by evaluating the near infrared absorption spectral information. The source spectrum and either the transmitted or backscattered light spectra were compared to known spectral data. After the bubble point or dew point was identified, the low line pressure was increased above such point by controlling the fluid flow rate or by moving the logging tool to an appropriate depth within the borehole.
In certain boreholes containing formation fluids combining various liquids and gases, carbon dioxide occupies substantial volumes relative to the amount of recoverable hydrocarbons. As the formation fluids are produced to the wellbore surface, hydrocarbon gases are separated from the noncommercial carbon dioxide because the economic value of carbon dioxide relative to the hydrocarbons is low. Although carbon dioxide has been historically discharged into the ambient surroundings, global warming issues may discourage this form of gas separation and disposal. Carbon dioxide is also reinjected into subsurface geologic formations, however re-injection wells are expensive and may be impractical in certain geographic regions.
Accordingly, a need exists for a system capable of accurately evaluating the presence and quantity of carbon dioxide downhole in a borehole so that zones containing high levels of carbon dioxide can be avoided. The system should accurately identify the carbon dioxide concentration under different pressures, temperatures and wellbore conditions, and should provide real-time logging capabilities before borehole completions operations are performed.
SUMMARY OF THE INVENTION
The present invention provides an apparatus and method for analyzing the carbon dioxide concentration in a fluid sample downhole in a borehole. The apparatus comprises a chamber defining an initial volume for containing the fluid sample, a means for expanding said chamber initial volume to decompress the fluid sample, and a transmitter for discharging mid-infrared light. A sensor measures the absorption of mid-infrared light by the decompressed fluid sample and generates a signal representing the carbon dioxide concentration in the fluid sample. A processor receives the signal and determines the fluid sample carbon dioxide concentration.
In different embodiments of the apparatus, the sensor can measure infrared absorbance in ranges between 4.1 and 4.4 microns to identify carbon dioxide concentration, and between 3.2 and 3.6 microns to provide data representing methyl and methylene concentrations. The chamber expanding means can expand the chamber initial volume until the fluid sample is substantially one hundred percent gas phase, and a means for cleaning the transmitter and the sensor between successive measurements can reduce measurement errors.
The method of the invention comprising the steps of deploying a chamber into the borehole to define an initial chamber volume, of moving the fluid sample into said chamber volume, of closing said chamber to isolate the fluid sample from the borehole, and of expanding said initial chamber volume to decompress the fluid sample. A transmitter is operated to discharge mid-infrared light, and a sensor is operated to measure the fluid sample mid-infrared light absorbance and to generate a signal representing the carbon dioxide concentration. A processer can receive and store the signal from the sensor. The processor can also be operated to determine the carbon dioxide concentration.
REFERENCES:
patent: 4160373 (1979-07-01), Fastaia et al.
patent: 4297088 (1981-10-01), Akkerman
patent: 5068770 (1991-11-01), Baziuk
patent: 5332901 (1994-07-01), Eckles et al.
patent: 5340987 (1994-08-01), Eckles et al.
patent: 5357113 (1994-10-01), Liston et al.
patent: 5457320 (1995-10-01), Eckles et al.
patent: 5464982 (1995-11-01), Drucker et al.
patent: 5559333 (1996-09-01), Araya et al.
Civarolo Marcelo F.
DiFoggio Rocco
Fanini Otto N.
Forgang Stanislav W.
Hunziker James C.
Hannaher Constantine
Springs Darryl M.
Western Atlas International Inc.
LandOfFree
Downhole carbon dioxide gas analyzer does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Downhole carbon dioxide gas analyzer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Downhole carbon dioxide gas analyzer will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2437299