Active solid-state devices (e.g. – transistors – solid-state diode – Non-single crystal – or recrystallized – semiconductor... – Amorphous semiconductor material
Reexamination Certificate
2001-04-05
2003-05-20
Lebentritt, Michael S. (Department: 2824)
Active solid-state devices (e.g., transistors, solid-state diode
Non-single crystal, or recrystallized, semiconductor...
Amorphous semiconductor material
C257S053000, C257S057000, C257S432000
Reexamination Certificate
active
06566685
ABSTRACT:
CROSS-REFERENCE TO RELATED APPLICATIONS
This application is based upon and claims the benefit of priority from the prior Japanese Patent Applications No. 2000-110718, filed Apr. 12, 2000; and No. 2000-152828, filed May 24, 2000, the entire contents of both of which are incorporated herein by reference.
BACKGROUND OF THE INVENTION
The present invention relates to a photo sensor array and a method for manufacturing the same, the photo sensor array being constituted by arranging in two dimensions photoelectric conversion elements (photo sensors) formed of thin film transistors each having a double gate structure provided with a top gate electrode and a bottom gate electrode above and below a common semiconductor layer.
Conventionally, as a two-dimensional image reading device for reading printed matters, photographs, fine uneven configurations along finger prints, there is provided a device of a structure having a photo sensor array which is constituted by the arrangement of the photoelectric conversion elements (photo sensors) in a matrix-like configuration. As such photo sensor arrays, generally a solid imaging device such as a CCD (Charge Coupled Device) or the like is used.
As is known, the CCD has a structure in which photo sensors such as a photo diode, a transistor or the like are arranged in a matrix-like configuration, and an amount (a charge amount) of a pair of an electron and a hole generated in correspondence to a light amount applied to a light receiving portion of each of the photo sensors is detected with a horizontal scanning circuit and a vertical scanning circuit to sense the luminance of the applied light.
In a photo sensor system using such a CCD, since it is required to individually provide a selection transistor for setting each of the scanned photo sensors to a selection state, there is a problem in that the size of the system itself becomes large with an increase in the number of pixels.
Among the photo sensor systems to be applied to the above two-dimension image reading device, pad portions are arranged on the periphery of an array region in which the photo sensors are arranged in a matrix-like configuration. Some of the photo sensors are connected via the pad portions to a peripheral circuit such as a driver or the like for driving the photo sensor array. Here, for example, each of the photo sensors having a TFT structure constituting the photo sensor array has a structure in which a source and a drain electrode, and a gate electrode are provided with respect to a semiconductor layer provided on a glass substrate. Consequently, there is a problem in that since the section structure indispensably has a lamination structure, and the section structures at the array region and the pad portion are made different and individual manufacturing process is applied thereto, the film formation of the conductive layer and the insulating layer and the patterning step remarkably increases so that the manufacturing cost rises and the manufacturing time increases.
Furthermore, in the lamination structure of the photo sensor array, there is a problem in that a difference is generated in the step at the pad portion for connection with the peripheral circuit between the conductive layer formed at a relatively lower layer and the conductive layer formed at a relatively upper layer with the result that a junction with the peripheral circuit is likely to be deteriorated. Furthermore, there is also a problem in that the conductive layer formed on the relatively upper layer becomes more likely to be affected by the step by the conductive layer of the lower layer, and a danger of disconnection becomes high.
BRIEF SUMMARY OF THE INVENTION
An object of the present invention is to provide a photo sensor array and a method for manufacturing the same, the structure being intended to improve a junction between the photo sensor array and a peripheral circuit and suppressing the disconnection of the conductive layer while decreasing the manufacturing process.
A photo sensor array according to a first aspect of the present invention comprises:
a plurality of photo conversion elements separated from each other in a predetermined direction to be arranged, each photo conversion element including a semiconductor layer having an incidence effective region on which excited light is incident, a source and a drain electrode respectively provided on both end sides of the semiconductor layer, a first gate electrode provided below the semiconductor layer via a first gate insulating film, and a second gate electrode provided above the semiconductor layer via a second gate insulating film;
a source terminal commonly connected to the source electrodes of the photo conversion elements;
a drain terminal commonly connected to the drain electrodes of the photo conversion elements;
a first gate terminal commonly connected to the first gate electrodes of the photo conversion elements; and
a second gate terminal commonly connected to the second gate electrodes of the photo conversion elements,
at least one of the first gate electrode and the second gate electrode provided on the photo conversion elements being constituted of a first transparent electrode layer, and at least one of the source terminal, the drain terminal, and the gate terminal being constituted with the first transparent electrode layer.
According to the first aspect of the present invention, any of the source terminal, the drain terminal, the first gate terminal and the second gate terminal has a lamination structure including the transparent electrode layer which constitutes the first gate electrode or the second gate electrode. Thus, a favorable electric connection state with the peripheral circuit can be realized while lowering a sheet resistance which allows a thick formation of the structure of each terminal, and suppressing the failure in the configuration of the terminal. In particular, when the transparent electrode layer is made of ITO, a junction with the peripheral circuit can be improved as compared with the metal terminal other than the ITO.
The uppermost layer of at least any one of the source terminal, the drain terminal, and the first gate terminal may be constituted of the first transparent electrode layer. As a consequence, each of the terminals may be formed in a lamination layer by using the same material and the same process as the electrode layer formed on the incident side of the excited light with respect to the semiconductor layer.
Here, the photo sensor array comprises an electrostatic electricity discharging and contact sensing electrode provided via an insulating film above the photoelectric conversion terminals. When at least any one of the source terminal, the drain terminal, the first gate terminal and the second gate terminal is constituted with the second transparent electrode layer which constitutes the electrostatic electricity discharging and contact sensing electrode, it is possible to prevent the electrostatic breakdown and operation failure of the circuit such as a driver or the like with the contact of fingers on which static electricity is electrified. Thus, the driving of the photo sensor array can be automatically started.
Furthermore, at least as a lower layer of the source and the drain electrodes, the source and the drain terminals and the source-drain wiring, a semiconductor layer may be extended and provided. As a consequence, the lamination structure of each terminal portion can be made thick, and the configuration failure of the terminal is further suppressed, and a junction with the peripheral circuit can be further improved. Additionally, a step generated on the conductive layer such as an insulating layer provided on the layer upper than the semiconductor layer, the second gate electrode or the like can be alleviated, so that the deterioration of the insulating properties and the signal transmission properties can be suppressed.
Furthermore, the plurality of photoelectric conversion elements having the above structure are connected via terminals to a predetermined peripheral circuit such
Morikawa Shigeru
Sasaki Makoto
Casio Computer Co. Ltd.
Frishauf Holtz Goodman & Chick P.C.
Lebentritt Michael S.
Smith Brad
LandOfFree
Double gate photo sensor array does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Double gate photo sensor array, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Double gate photo sensor array will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3055553