Doppler direction finder and method of location using...

Communications: directive radio wave systems and devices (e.g. – Directive – Beacon or receiver

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C342S449000, C342S457000, C342S458000

Reexamination Certificate

active

06268829

ABSTRACT:

CROSS-REFERENCES TO RELATED APPLICATIONS
Not Applicable.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable.
REFERENCE TO A “MICROFICHE APPENDIX”
Not Applicable.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a Doppler direction finder and, in particular but not exclusively, to a Doppler direction finder for use in a cellular telecommunications network station. The present invention also relates to a method of locating, for example, a mobile station using a Doppler direction finder.
2. Description of the Related Art
Doppler direction finders are known which are designed to determine the direction from which a signal has been received. However, these known Doppler direction finders are generally designed to work with received signals having a relatively simple modulation such as for example frequency modulation or amplitude modulation. The known Doppler direction finders may not be suitable for use with received signals having a relatively complicated modulation such as Gaussian minimum shift keying (GMSK). In particular, the known Doppler direction finders require an increased amount of time in order to determine the direction from which a signal has been received, if complex modulation is used. This can be a problem if the direction finder has to determine the directions from which a number of signals are simultaneously received. Further, the accuracy of the known Doppler direction finders may decrease with increased modulation complexity. With more complex modulation, the detection range, and accuracy of the Doppler direction finder is reduced.
In known cellular communication networks, a fixed base transceiver station (BTS) is arranged to transmit signals to and receive signals from mobile stations (MS), for example mobile telephones, which are located in the cell or cell sector served by that base transceiver station. For general communication traffic between the BTS and MS, information on the exact location of the mobile station within the cell or cell sector is not of importance provided that the quality of the communication between the BTS and MS is satisfactory. However, the US Authorities (FCC) have recently introduced a regulation that requires the location of a mobile station within a cell or cell sector to be pinpointed within 125 meters when that mobile station makes a call to one of the emergency services. Several methods have been proposed for locating the position of the mobile station within a cell or cell sector. One method uses the principle of time difference of arrival (TDOA). With the time difference of arrival method, a signal from one mobile station is received by a plurality of base transceiver stations. By an observing the difference in time required for a given signal from a given mobile station to arrive at the plurality of base transceiver stations, it is possible to determine the location of the mobile station. However, this method can not be used if the signal from a mobile station only can be received by a single base station. Additionally, there are difficulties associated with the provision of the required timing signal at each of the base transceiver stations in order to determine the time difference.
In an alternative method which has been proposed, timing advance information is used. Timing advance information is required in time division multiple access (TDMA) cellular networks. In time division multiple access cellular networks, a plurality of time slots is used. A frame is made up of a predetermined number of time slots. Each mobile station will be allocated a given time slot in each frame in which to communicate with a base transceiver station. However, when the mobile station is relatively far from the base transceiver station, the signal will take longer to travel to the base transceiver station as compared to when the mobile station is relatively close to the base transceiver station.
In order to process correctly the signals received from various mobile stations, the signal from each mobile station must be received within its allocated time slot at the base transceiver station. To ensure that the signals are received within the allocated time slots the base station will provide the mobile station with timing advance information. This information indicates when the mobile station should transmit its signal to the base transceiver station. Accordingly, when the mobile station is relatively far from the base transceiver station, the mobile station will send its signal to the base station earlier than if the mobile station is relatively close to the base station. The signal transmitted by the mobile station will therefore be received by the base transceiver station in its allocated time slot. The timing advance information is thus a measure of the distance between the mobile station and the base station. However, this system is not accurate if information from only one base station is available. Furthermore, this method does not provide any indication as to the direction from which a signal has been received. This method can be improved if timing advance information from two base stations is considered. However, there are again problems associated with the provision of the required timing signals.
BRIEF SUMMARY OF THE INVENTION
It is therefore an aim of certain embodiments of the present invention to reduce or at least mitigate these problems.
According to one aspect of the present invention, there is provided a Doppler direction finder comprising:
at least one antennae spaced from a rotation point, said antenna arranged in use, to be rotated about said rotation point, said at least one antenna being arranged to provide a first output signal comprising a signal received by said at least one antenna combined with a Doppler shift component;
means for providing a second output signal comprising said received signal without said Doppler shift component;
means for processing said first and said second signals to obtain said Doppler shift component; and
means for determining from said Doppler shift component the direction from which said received signal is received.
By processing the first and second signals, the modulation component of any received signal may be cancelled. Accordingly, it has been found that this arrangement may permit the detection range of the Doppler direction finder to be increased and also may allow more accurate results. The Doppler direction finder embodying the present invention does have the advantage of a quick settling time making it particularly useful in radio telecommunications networks.
In the case where the at least one antenna physically rotates, satisfactory results may be obtained. However if the at least one antenna is electronically rotated, then at least three antennae may be provided. Preferably between 3 and 10 antennae may be provided but good results may be obtained with between 4 and 8 antennae.
Preferably the means for providing a second output signal comprises a further antenna. This further antenna may have an axis which passes through the rotation point. The further antennae may be at the same level as the at least one rotating antenna or alternatively may be above or below the at least one antennae. This feature has the advantage that the signal received by the further antenna may be very similar to the signal which will be received by the at least one rotating antenna, but without the Doppler shift components. The further antenna is preferably substantially stationary although in some embodiments the further antenna may be rotating about its own axis.
In an alternative embodiment, the means for providing a second output signal comprises means for combining a plurality of signals from the at least one antenna to provide said second output signal. This has the advantage that a separate antenna is not required for the second signal. Additionally, in those embodiments where a plurality of rotating antennae are provided, the problems associated with signal fading can be reduced in that the signal is received by more than one anten

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Doppler direction finder and method of location using... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Doppler direction finder and method of location using..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Doppler direction finder and method of location using... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2525739

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.