Active solid-state devices (e.g. – transistors – solid-state diode – Heterojunction device – Field effect transistor
Reexamination Certificate
2011-04-05
2011-04-05
Jackson, Jr., Jerome (Department: 2815)
Active solid-state devices (e.g., transistors, solid-state diode
Heterojunction device
Field effect transistor
C257SE29246, C257SE29248, C257S027000
Reexamination Certificate
active
07919791
ABSTRACT:
A Group III-V nitride microelectronic device structure including a delta doped layer and/or a doped superlattice. A delta doping method is described, including the steps of: depositing semiconductor material on a substrate by a first epitaxial film growth process; terminating the deposition of semiconductor material on the substrate to present an epitaxial film surface; delta doping the semiconductor material at the epitaxial film surface, to form a delta doping layer thereon; terminating the delta doping; resuming deposition of semiconductor material to deposit semiconductor material on the delta doping layer, in a second epitaxial film growth process; and continuing the semiconductor material second epitaxial film growth process to a predetermined extent, to form a doped microelectronic device structure, wherein the delta doping layer is internalized in semiconductor material deposited in the first and second epitaxial film growth processes.
REFERENCES:
patent: 4780748 (1988-10-01), Cunningham et al.
patent: 5329150 (1994-07-01), Schubert et al.
patent: 5831277 (1998-11-01), Razeghi
patent: 5965931 (1999-10-01), Wang et al.
patent: 6064082 (2000-05-01), Kawai et al.
patent: 6110813 (2000-08-01), Ota et al.
patent: 6156581 (2000-12-01), Vaudo et al.
patent: 6274889 (2001-08-01), Ota et al.
patent: 6316793 (2001-11-01), Sheppard et al.
patent: 6342411 (2002-01-01), Pitts, Jr.
patent: 6465814 (2002-10-01), Kasahara et al.
patent: 6479836 (2002-11-01), Suzuki et al.
patent: 6489628 (2002-12-01), Morizuka
patent: 6498360 (2002-12-01), Jain et al.
patent: 6552373 (2003-04-01), Ando et al.
patent: 6849882 (2005-02-01), Chavarkar et al.
patent: 6992319 (2006-01-01), Fahimulla et al.
patent: 2002/0017696 (2002-02-01), Nakayama et al.
patent: 2002/0096692 (2002-07-01), Nakamura et al.
patent: 0 841 704 (1998-05-01), None
patent: 1172859 (2002-01-01), None
patent: 1 189 287 (2002-03-01), None
patent: 10-248507 (1998-10-01), None
patent: 10-294452 (1998-11-01), None
patent: 2000-138368 (2000-05-01), None
patent: 2000-323704 (2000-11-01), None
patent: 2001-077353 (2001-03-01), None
patent: 2001-274375 (2001-10-01), None
patent: 2001284576 (2001-10-01), None
patent: 2002-314072 (2002-10-01), None
Asbeck et al, Electronics Letters “Piezoelectrioc charge densities in AlGaN/GaN HFETs” Jul. 3, 1997 vol. 33 No. 14 pp. 1230-1231.
Maeda et al “Two-dimensional . . . transistors” Applied Physics Letters vol. 73 No. 13 Sep. 28, 1998.
Eastman et al, “Undoped . . . Amplification”, IEEE Transactions on Electron Devices, vol. 48 No. 3 Mar. 2001 pp. 479-485.
U.S. Appl. No. 09/605,195, filed Jun. 28, 2000, Jeffrey S. Flynn et al.
U.S. Appl. No. 09/179,049, filed Oct. 26, 1998, Robert P. Vaudo.
Zhao, et al., Applied Physics Letters, vol. 77, (14), Oct. 2, 2000, pp. 2195-2197.
Kim, et al., MRS Internet Journal of Nitride Semiconductors, Res. 4SI, G3.49 (1999).
Shashkin et al, “Control of charge transport mode of schottky barrier by delta doping; calculation and experiment for AIGaAs”, Semiconductors 36, 505 (2002).
Jogai et al, “Free electron distribution in AlGaN/GaN heterojunction FET”, J. Appl. Phys. 91, 3721 (2002).
Watanabe et al, “PL properties of delta-doped barrier layers in modulation doped InAlAs/InGaAs FET”, J. Appl. Phys. 89, 1696 (2001).
Hubik et al, “Deep levels in GaAs due to Si delta doping”, J. Appl. Phys. 88, 6488 (2000).
Dao et al, “PL in delta doping InGaAs/GaAs single quantum wells”, J. Appl. Phys. 87, 3896 (2000).
Bouzaiene et al, “Improvement of electron density in the channel of an AlGaAs/GaAs heterojunction by introducing Si delta doping in the quantum well”, J. Appl. Phys. 85, 8223 (1999).
O. Buchinsky, et al. “n-type delta-doped strained quantum well lasers for improved temperature-dependent performance”, App. Phys. Lett. 72, 1484 (1998).
Babinski et al, “Subband electron densities of Si dleta-doped pseudomorphic InGaAs/GaAs heterostructures”, Appl. Phys. Lett. 70, 3582 (1997).
Nara et al, Theoretical investigation of delta doping of Se atoms in GaAs, Appl. Phys. Lett. 70, 3534 (1997).
A.B. Henriques, et al., “Ionized impurity scattering in periodically delta doped InP”, Phys. Rev. B 55, 13072 (1997).
O. Buchinsky, et al. “n-type delta doped quantum well lasers with extremely low transparency current density”, Appl. Phys Lett 68, 2043 (1996).
Petravic et al, “Very high carbon dleta doping concentration in AlGaAs grown by MOVPE using trimethylaluminum as doping precursor”, J. Appl Phys 79, 3554 (1996).
Schwabe et al, “Optical investigations of isovalent delta layers in III-V semiconductor layers”, J. Appl. Phys. 77, 6295, (1995).
Sato et al, “Uniform and delta doping of Carbon in GaAs by solid source MBE”, Appl. Phys. Lett. 66, 1791 (1995).
Ashwin et al, “The transition from dilute aluminum delta structures to an AlAs monolayer in GaAs and a comparison with Si delta doping”, J. Appl. Phys. 76, 7627 (1994).
Wilks et al, “Investigation of silicon delta doped Gallium arsenide using Shubnikov de Haas effect and theoretical modeling”, J. Appl. Phys 76, 3583 (1994).
Mendex et al, “Stark Ladders in periodically Si-delta doped GaAs”, Phys. Rev. B 49, 11471 (1994).
Shieh et al, “Influences of delta doping time and spacer thickness on the mobility and two-dimensional electron gas concentration in delta doped GaAs/InGaAs/GaAs pseudomorphic heterostructures”, Technology B 12, 154 (1994).
Munoz et al, “Tehniques to minimize DX center deleterious effect in III-V device performance”, J. Appl. Phys. 73, 4988 (1993).
Young, et al., “Consequences of DQ centers on the charge distribution of double quantum wells, delta modulation doped heterostructures”, J. Vac. Sci. Tech. B 13, 685 (1995).
Degani, et al., Electronic properties of multiple Si delta doping in GaAs, J. Appl. Phys. 70, 4362 (1991).
Henini et al, “Effect of Si delta doping and growth temperature on the I-V characteristics of MBE grown GaAs/ AlGaAs resonant tunneling devices”, J. Vac. Sci Technology B 11, 958 (1993).
Dickmann et al, “Influence of delta doping position in the channel on th device performance of AlGaAs/InGaAs modulation-doped field effect transistors”, Appl. Phys. Lett 60, 88 (1992).
Ihm et al, “Modulation of superlattice band structure via delta doping”, Phs Rev B 44, 6266 (1991).
Pan et al, “Si delta doped FET by atmospheric pressure MOCVD”, Appl. Phys. Lett. 59, 458 (1991).
Kim et al, “Selenium and Silicon delta-doping properties of GaAs by atmospheric MOCVD”, J. Appl. Phys. 68, 2747 (1990).
Singh, Madhusudan, et al., Examination of tunnel junctions in the AlGaN/GaN system: Consequences of polarization charge, Appl. Phys. Lett., Sep. 18, 2000, pp. 1867-1869, vol. 77, No. 12.
Ambacher, O., et al., “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN . . . ”, “Journal of Applied Physics”, Jan. 1, 2000 pp. 334-344, vol. 87, No. 1, Publisher: American Institute of Physics.
Galczak, J. et al., “Spatial separation of recombining carriers within nitride GaN/(AlGa)N quantum wells induced by piezoelectric phenomena”, “Opto-Electronics Review”, 2004, pp. 369-376, vol. 12, No. 4.
Kowalski, O. P. et al., “GalnP-AlGaLnP band offsets determined from hydrostatic pressure measurements”, “Applied Physics Letters”, Jan. 30, 1995, pp. 619-621, vol. 66. No. 5, Publisher: American Institute of Physics.
Yen, Sun Tung et al., “Effects of doping in the active region of 630-nm band GalnP-AlGaln P tensile strained quantum-well lasers”, “IEEE Journal of Quantum Electronics”, Sep. 1998, pp. 1644-1651, vol. 34, No. 9.
Dingle, R., et al., “Electron mobilities in modulation-doped semiconductor hetero
Brandes George R.
Flynn Jeffrey S.
Cree Inc.
Gustafson Vincent K.
Hultquist IP
Jackson, Jr. Jerome
LandOfFree
Doped group III-V nitride materials, and microelectronic... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Doped group III-V nitride materials, and microelectronic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Doped group III-V nitride materials, and microelectronic... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2698715