DNA encoding oxidoreductase and polypeptide encoded thereby

Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Recombinant dna technique included in method of making a...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S023200, C536S024300, C536S024310, C530S350000, C435S071100, C435S071200, C435S471000, C435S325000, C435S252300, C435S254110, C435S320100, C435S006120, C435S007100

Reexamination Certificate

active

06808895

ABSTRACT:

TECHNICAL FIELD
This invention relates to nucleic acid and amino acid sequences of oxidoreductase molecules and to the use of these sequences in the diagnosis, treatment, and prevention of cell proliferative disorders including cancer, endocrine, metabolic, reproductive, neurological, autoimmune/inflammatory, and viral disorders.
BACKGROUND OF THE INVENTION
Many pathways of biogenesis and biodegradation require oxidoreductase (dehydrogenase or reductase) activity, coupled to the reduction or oxidation of a donor or acceptor cofactor. Potential cofactors include cyrochromes, oxygen, disulfide, iron-sulfur proteins, flavin adenine dinucleotide (FAD), and the nicotinamide adenine dinucleotides NAD and NADP (Newsholme, E. A. and Leech, A. R. (1983)
Biochemistry for the Medical Sciences
, John Wiley and Sons, Chichester, U. K. pp. 779-793).
Reductase activity catalyzes the transfer of electrons between substrate(s) and cofactor(s) with concurrent oxidation of the cofactor. The reverse dehydrogenase reaction catalyzes the reduction of a cofactor and consequent oxidation of the substrate. Oxidoreductase enzymes are a broad superfamily of proteins that catalyze numerous reactions in all cells of organisms ranging from bacteria to plants to humans. These reactions include metabolism of sugar, certain detoxification reactions in the liver, and the synthesis or degradation of fatty acids, amino acids, glucocorticoids, estrogens, androgens, and prostaglandins. Different family members are named according to the direction in which their reactions are typically catalyzed; thus they may be referred to as oxidoreductases, oxidases, reductases, or dehydrogenases. In addition, family members often have distinct cellular localizations, including the cytosol, the plasma membrane, mitochondrial inner or outer membrane, and peroxisomes.
Tetrahydrofolate is a derivatized glutamate molecule that acts as a carrier, providing activated one-carbon units to a wide variety of biosynthetic reactions, including synthesis of purines, pyrimidines, and the amino acid methionine. Tetrahydrofolate is generated by the activity of a holoenzyme complex called tetrahydrofolate synthase, which includes three enzyme activities: tetrahydrofolate dehydrogenase, tetrahydrofolate cyclohydrolase, and tetrahydrofolate synthetase. Thus, tetrahydrofolate dehydrogenase plays an important role in generating building blocks for nucleic and amino acids, crucial to proliferating cells.
Intracellular redox status plays a critical role in the assembly of proteins. A major rate limiting step in protein folding is the thiol:disulfide exchange necessary for correct protein assembly. Although incubation of reduced, unfolded proteins in buffers containing defined ratios of oxidized and reduced thiols can lead to folding into native conformation, the rate-of folding is slow, and the attainment of the native conformation decreases proportionately with protein size and the number of cysteine residues. Certain cellular compartments such as the endoplasmic reticulum of eukaryotes and the periplasmic space of prokaryotes are maintained in a more oxidized state than the surrounding cytosol. Correct disulfide formation can occur in these compartments, but it occurs at a rate that is insufficient for normal cell processes and inadequate for synthesizing secreted proteins.
Protein disulfide isomerases (PDIs), thioredoxins, and glutaredoxins are able to catalyze the formation of disulfide bonds and regulate the redox environment in cells to enable the necessary thiol:disulfide exchanges. Each of these classes of molecules has a somewhat different function, but all belong to a group of disulfide-containing redox proteins that contain a conserved active-site sequence and are ubiquitously distributed in eukaryotes and prokaryotes. PRIs are found in the endoplasmic reticulum of eukaryotes and in the periplasmic space of prokaryotes. PRIs function by exchanging their own disulfide for thiols in a folding peptide chain. In contrast, reduced thioredoxins and glutaredoxins are generally found in the cytoplasm and function by directly reducing disulfides in the substrate proteins. Thioredoxin (Trx), a heat-stable, redox-active protein, contains an active site cysteine disulfide/dithiol. Oxidized thioredoxin, Trx-S, can be reduced to the dithiol form by NADPH and a specific flavoprotein enzyme, thioredoxin reductase. Reduced thioredoxin, Trx-(SH), participates in a number of redox reactions mostly linked to reduction of protein disulfides. Trx and thioredoxin reductase (TR), together with NADPH, form a redox complex in which TR catalyzes the electron transport from NADPH to Trx. The reduced thioredoxin then functions as an electron donor in a wide variety of different metabolic processes.
Disulfide-containing redox proteins not only facilitate disulfide formation, but also regulate and participate in a wide variety of physiological processes. The thioredoxin system serves, for example, as a hydrogen donor for ribonucleotide reductase and controls the activity of enzymes by redox reactions. Mammalian thioredoxin (MT) acts as a hydrogen donor for ribonucleotide reductase and methionine sulfoxide reductase, facilitates refolding of disulfide-containing proteins, and activates the glucocorticoid and interleukin-2 receptors. MT also modulates the DNA binding activity of some transcription factors either directly (TFIIIC, BZLF1, and NF-kB) or indirectly (AP-1) through the nuclear factor Ref-1. The importance of the redox regulation of transcription factors is exemplified by the v-fos oncogene where a point mutation of the thioredoxin-modulated cysteine residue results in constitutive activation of the AP-1 complex. Thioredoxin is secreted by cells using a leaderless pathway and stimulates the proliferation of lymphoid cells, fibroblasts, and a variety of human solid tumor cell lines. Furthermore, thioredoxin is an essential component of early pregnancy factor, inhibits human immunodeficiency virus expression in macrophages, reduces H
2
O
2
, scavenges free radicals, and protects cells against oxidative stress (Abate, C. et al., (1990) Science 249: 1157-1161; Rosen, A. et al. (1995) Int. Immunol. 7: 625-633; Tagaya, Y. et al (1989) EMBO J. 8: 757-764; Newman, G. W. (1994) J. Expt. Med. 180: 359-363; and Makino, Y. (1996) J. Clin. Invest. 98: 2469-2477).
Short-chain alcohol dehydrogenases (SCADs) are a family of dehydrogenases that share only 15% to 30% sequence identity, with similarity predominantly in the coenzyme binding domain and the substrate binding domain. In addition to the well-known role in detoxification of ethanol, SCADs are also involved in synthesis and degradation of fatty acids, steroids, and some prostaglandins, and are therefore implicated in a variety of disorders such as lipid storage disease, myopathy, SCAD deficiency, and certain genetic disorders. For example, retinol dehydrogenase is a SCAD-family member (Simon, A. et al. (1995) J. Biol. Chem. 270:1107-1112) that converts retinol to retinal, the precursor of retinoic acid. Retinoic acid, a regulator of differentiation and apoptosis, has been shown to down-regulate genes involved in cell proliferation and inflammation (Chai, X. et al. (1995) J. Biol. Chem. 270:3900-3904). In addition, retinol dehydrogenase has been linked to hereditary eye diseases such as autosomal recessive childhood-onset severe retinal dystrophy (Simon, A. et al. (1996) Genomics 36:424-430).
Propagation of nerve impulses, modulation of cell proliferation and differentiation, induction of the immune response, and tissue homeostasis involve neurotransmitter metabolism (Weiss, B. (1991) Neurotoxicology 12:379-386; Collins, S. M. et al. (1992) Ann. N.Y. Acad. Sci. 664:415-424; Brown, J. K. and Imam, H. (1991) J. Inherit. Metab. Dis. 14:436-458). Many pathways of neurotransmitter metabolism require oxidoreductase activity, coupled to reduction or oxidation of a cofactor, such as NAD
+
/NADH (Newsholme, E. A. and Leech, A. R. (1983)
Biochemistry for the Medical Sciences
, John Wiley and Sons, Chichester, U.K. pp. 779-7

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

DNA encoding oxidoreductase and polypeptide encoded thereby does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with DNA encoding oxidoreductase and polypeptide encoded thereby, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and DNA encoding oxidoreductase and polypeptide encoded thereby will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3308743

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.