DNA-cleaving antitumor agents

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Nitrogen containing other than solely as a nitrogen in an...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S671000, C564S248000, C564S509000

Reexamination Certificate

active

06297284

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to a method and compound for the treatment of cancer. More particularly, an embodiment relates to the use of DNA interactive compounds that bind to DNA and undergo a series of chemical reactions in the presence of DNA to generate reactive intermediates that cleave DNA.
2. Brief Description of the Related Art
In 1972 Robert Bergman and co-workers demonstrated the gas-phase thermal rearrangement of substituted 3-hexene-1,5-diynes (
1
A/
1
B, FIG.
1
), and proposed the intermediacy of a 1,4-5 didehydrobenzene, 2 in this process (Jones and Bergman, 1972). Indirect evidence for the existence of a singlet 1,4-didehydrobenzene intermediate was provided by solution-phase CIDNP experiments, which afforded the substituted benzene products 3 (Lockhart and Bergman, 1981). Bergman's original finding has gained additional significance in light of the discovery of an entire class of antitumor antibiotics, exemplified by calicheamicin &ggr;
1
I
(4,
FIG. 2
) (Lee, 1987) that exert their potent cytotoxic effects through a Bergman cyclization of an enediyne core to produce a 1,4-didehydrobenzene intermediate. This diradical abstracts hydrogen atoms from the DNA ribose backbone, resulting in DNA strand scission (Hangeland, 1992).
Although simple, acyclic enediynes generally require higher temperatures than is physiologically relevant for Bergman cyclization to take place, synthetic enediynes that are strained may cyclize and produce DNA cleaving diradicals under physiological conditions, (Nicolaou, Dai, Tsay, Estevez, and Wrasidlo, 1992) and large numbers of these reactive enediynes have been designed, synthesized, and evaluated for biological activity (Grissom, Gunawardena, Klingberg, and Huang, 1996). More recently, the synthetic utility of the Bergman cyclization has been explored, principally by Grissom, who has employed the 1,4-didehydrobenzene intermediates afforded by the Bergman cyclization of substituted 3-hexene-1,5-diynes and substituted 1,2-diethynylbenzenes in subsequent free radical reactions to rapidly construct polycyclic compounds (Grissom, Calkins, Huang, and McMillen, 1994).
A related diradical-generating cyclization of 1,2,4-triene-5-ynes, modeled on the presumed DNA strand scission chemistry of the neocarzinostatin chromophore (Edo, 1985) (
5
, FIG.
3
), has been discovered by Myers and co-workers (Myers, 1989). These workers found that enyne allene
6
undergoes an exothermic conversion to the &agr;,3-didehydrotoluene intermediate
7
, which may either abstract hydrogen atoms from 1,4-cyclohexadiene to produce toluene (
8
) or combine with the cyclohexyldienyl radical to form the adduct
9
(FIG.
4
). This Myers cyclization has been exploited by many workers in the design of simple diradical-generating compounds with demonstrable ability to cleave DNA under physiological conditions (Nicolaou, Maligres, Shin and Deleon, 1990). The Myers cyclization has also been employed synthetically by Grissom (Grissom, Klingberg, Huang, and Slattery, 1997) and Wang (Wang, Wang, Tarli, and Gannet, 1996) in the construction of polycyclic molecules.
Schmittel and co-workers, (Schmittel, et al., 1995) and others (Gillman, et al., 1995) have reported anomalous products
12
,
13
, and
14
of thermal cyclizations of enyne allenes
10
(FIG.
5
). These products are more pronounced in cases where the enyne allene substituents R, R
1
, or R
2
are large. In these cases, the enyne allenes undergo cyclization to the benzofulvalene biradical intermediate
11
, the fate of which is dependent upon the nature of the substituents. Schmittel has demonstrated that enyne allenes that undergo this C
2
-C
6
cyclization reaction are able to cleave DNA, presumably as a result of hydrogen atom abstraction by the diradical
11
(Schmittel, Maywald, and Strittmatter, 1997).
Despite the promise, both synthetic and biological, of the chemistry of enediynes and enyne allenes, heteroatom substituted variants of these systems have not been extensively explored. Moore (Moore, 1992) has found that the enyne ketenes
16
, generated from thermolysis of cyclobutenones
15
, afford quinones
18
, through the intermediate diradicals
17
(FIG.
6
). These cyclobutenones also exhibit DNA cleaving ability, presumably due to the ability of the diradical intermediates to abstract hydrogen atoms from the DNA backbone (Sullivan, 1994). Padwa (Padwa, 1993) and Nakatani (Nakatani, 1994) have used alternative routes to enyne ketenes, which were also found to afford cycloaromatized products through diradical intermediates.
In contrast to the oxo-substituted enyne allene system, few aza-substituted enediyne or enyne allenes had been reported prior to our work. Wang and co-workers had reported the failed attempt to coax nitrile (
19
,
FIG. 7
) to undergo an aza-Myers cyclization (Wang, Wang, and Sattsangi, 1996). Gillman and co-workers had reported similar findings for a related 2-allenyl cyanobenzene (Gillman and Heckhoff, 1996). Most recently, Wang and co-workers have shown that the ketenimine
20
gives products predicted by both an aza-Myers cyclization (
21
) and the C
2
-C
6
cyclization (
22
) (
FIG. 8
) (Shi and Wang, 1998).
SUMMARY OF THE INVENTION
The synthesis and utility of novel aza-derivatives of enediynes, enyne allenes, and diallenes is described herein. The term “aza-derivative” is herein taken to mean aza-enediynes, aza-enyne allenes, and aza-diallenes. These aza-derivatives have the potential to generate novel reactive intermediates, and thus serve as an important tool in the study of these intermediates. In addition, these same intermediates may be harnessed to affect nucleic acid strand scission, and thus serve as the warhead of a new class of antitumor or antiviral compounds.
Aza-enediyne derivatives, in one embodiment, have the general structure:
The parent structure includes an imine covalently coupled to two alkynyl groups. A variety of substitutents may be attached to the parent structure at the R positions. Any commonly known substituent may be placed upon the parent structure as long as the resulting compound is relatively stable.
The parent structure may also be formed as an iminium ion (i.e., a salt of the parent structure) having the structure:
A variety of substitutents may be attached to the parent structure at the R positions. Any commonly known substituents may be placed upon the parent structure as long as the resulting compound is relatively stable. The nitrogen atom is either protonated, alkylated, or incorporated into a ring system.
Aza-enediyne derivatives, in another embodiment, have the isomeric parent structures:
Each of the isomeric parent structures includes an imine covalently coupled to an alkynyl group and a propargyl group. The groups may be attached to either the nitrogen or the carbon as depicted above. A variety of substitutents may be attached to the parent structure at the R positions. Any commonly known substituent may be placed upon the parent structure as long as the resulting compound is relatively stable.
The parent structures may also be formed as an iminium ion (i.e., a salt of the parent structure) having the structures:
A variety of substitutents may be attached to the parent structures at the R positions. Any commonly known substituents may be placed upon the parent structure as long as the resulting compound is relatively stable. The nitrogen atom is either protonated, alkylated, or incorporated into a ring system.
Aza-enyne allene derivatives, in one embodiment, have the isomeric parent structures:
Each of the isomeric parent structures includes an imine covalently coupled to an alkynyl group and an allenyl group. The groups may be attached to either the nitrogen or the carbon as depicted above. A variety of substitutents may be attached to the parent structure at the R positions. Any commonly known substituent may be placed upon the parent structure as long as the resulting compound is relatively stable.
The parent structures may also be formed as an iminium io

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

DNA-cleaving antitumor agents does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with DNA-cleaving antitumor agents, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and DNA-cleaving antitumor agents will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2582555

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.