Diverter valve

Fluid handling – Systems – Multi-way valve unit

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C137S625130, C137S886000

Reexamination Certificate

active

06408882

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to valves, and more particularly to an improved diverter valve for providing fluid communication between a main port and a first and a second secondary port.
2. Background of the Invention
Diverter valves have the common characteristic of diverting fluid flow from a main port to either a first secondary port or a second secondary port. The main port can either be an input port or an output port with the first and second ports being either an output port or an input port, respectively. The primary function of the diverter valve is to allow fluid communication between the main port and only one of the first and second ports. In general, diverter valves prevent communication between the first and second ports.
Many diverter valves are commonly referred to as Y valves since these diverter valves take a basic Y-shape. The main port is the linear portion of the Y-shape and first and second ports are the divergent or the V-shape portion of the Y-shape. The Y valve has become very popular since the Y valve enables the diversion of fluid between a main port and either the first and second ports while maintaining excellent flow characteristics. The excellent flow characteristics of the Y valve are due to the fact the fluid is not substantially redirected into another direction such as a change in direction of ninety degrees or greater. The Y valve merely redirect the fluid flow through an acute angle such as a change in direction of much less than ninety degrees.
In general, diverter valves were formed from a valve housing having an internal valve chamber. The main port and the first and second ports communicated with the internal valve chamber. A valve element was movable within the internal valve chamber. The valve element was movable between a first and a second position for respectively communicating the main port to either the first port or the second port. The valve element could be slidably movable within the internal valve chamber or may be rotatably moveable within the internal valve chamber depending upon the design of the diverter valve.
U.S. Pat. No. 2,485,504 to Morgan discloses a valve comprising a body provided with a cylindrical bore having a circumferential groove therein and two ports communicating with the bore at opposite sides of the groove. A valve piston is mounted in the bore to control the flow of fluid between the ports and having a cylindrical portion which fits the bore closely. The piston and body are relatively slidable in the direction of the axis of the bore. A ring of yieldable material is mounted in the groove having an unstressed inside diameter somewhat less than the diameter of the bore so that the cylindrical portion of the piston may stress the ring to prevent leakage of fluid past the same. The piston also has a portion of reduced diameter connected to the cylindrical portion by a gradually tapered surface. The diameter of the reduced portion is substantially equal to the inside diameter of the unstressed ring. The reduced portion has one or more longitudinally extending grooves therein to permit fluid flow between the ports when the piston and body are so positioned relatively as to bring the reduced portion within the ring.
U.S. Pat. No. 2,524,142 to Seeloff discloses a fluid valve comprising a body member having a bore therein with a core member being slidably received in the bore. The improvement consists of an annular recess in one of the members and an annular valving land on the one of the members adjacent the recess and separated therefrom by an annular rounded shoulder. A circumferential groove in the other of the members is located to overlie the recess when the core member is in one axial position and to overlie the annular land when the core member is in its other axial position during normal operation of the valve. The other member is loosely interfitted with respect to the one of the members in the region of the annular land, and a toroidal-shaped fluid impervious ring of resilient and deformable material positioned in the groove. The groove has greater axial length than the thickness of the ring whereby the ring may have limited rolling contact with the rounded shoulder. An annular recess in the other member adjacent to the groove coacts with the first mentioned annular recess to provide an axial fluid passage upon the core member being moved to cause the groove and ring to overlie the first mentioned passage.
U.S. Pat. No. 2,782,801 to Ludwig discloses a valve structure comprising a valve housing having a bore formed therethrough communicating with inlet and outlet ports with a valve spool body being slidable in the bore. A plurality of stepped peripherally disposed cylindrical flanges are formed on the body intermediate the ends. The flanges are spaced apart by channels of equal width and which extend inwardly beyond the surface of the spool body. A body of flexible sealing material is molded on the stepped flanges and filling the channels and engaging a face of the largest of the stepped flanges and projecting beyond the periphery of the largest flange and engaging the inner surface of the bore. The outer surface of the sealing body is tapered away from the periphery thereof to the periphery of the spool body.
U.S. Pat. No. 3,990,477 to Johnson discloses a flow control valve including a valve body defining a main bore and a cross-drilled bore communicating therewith. A valve spool is reciprocable within the main bore and includes first and second lands connected by a reduced diameter connecting portion. The connecting portion has fixed relative thereto and thereabout an annular rib positioned between the two lands. The rib acts as a guide to direct fluid substantially perpendicular to the axis of reciprocal motion of the spool when the spool is positioned to allow fluid flow between the main and cross-drilled bores to minimize fluid flow forces tending to hold the spool in an open position.
U.S. Pat. No. 4,066,239 to Hall discloses a fluid control valve including a valve body having a pump inlet port for connection to a relatively high pressure pump and a drain outlet port for connection to a substantially atmospheric pressure reservoir. A valve spool has a metering slot leading from the peripheral surface of a first land to a peripheral surface of a second land. The metering slot includes a substantially cylindrical pocket recessed into the second land. A groove is formed in the first land and a reduced diameter portion is positioned between the lands. The groove connects the peripheral surface of the first land with the cylindrical pocket and has an arcuate surface portion leading from the peripheral surface of the first land. An elongated bottom surface is positioned substantially parallel to the longitudinal axis of the spool and tangent to the arcuate surface portion. The spool is movable along a longitudinal axis between a first position at which flow from the pump inlet port to the drain outlet port is metered outwardly relative to the spool through the cylindrical pocket and a second position at which fluid flow from the pump inlet port to the drain outlet port is metered inwardly through the groove. The metering slot is of a construction sufficient for directing the fluid metered inwardly through the groove into the cylindrical pocket to generate a force acting on the spool tending to close the metering slot.
U.S. Pat. No. 4,182,375 to Fukano et al. discloses a spool-sleeve type change-over valve. The axial width of the intake passage is reduced relative to that of the discharge passage within a range in which the same cylinder response as attained by intake and discharge passages of the same axial width is retained.
U.S. Pat. No. 4,739,797 to Scheffel discloses a hydraulic piston-valve-type control valve that includes a housing in which a control piston is longitudinally displaceably disposed. The control piston regulates at least one fluid stream that flows through the housing by means of annular recesses and hence control surfaces formed on

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Diverter valve does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Diverter valve, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Diverter valve will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2958171

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.