Diverter device for a flexible circuit

Electricity: conductors and insulators – Conduits – cables or conductors – Insulated

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C248S074300

Reexamination Certificate

active

06667441

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The invention relates to a diverter device for a flexible circuit, in particular for a film conductor.
Flexible circuits and film conductors are distinguished by their flat construction, and thus require only a small structural depth. In the flexible circuit, a plurality of printed conductors are conventionally vapor-deposited on a carrier layer. The special manufacturing method enables complex printed conductor patterns. Such printed conductors are used in particular in the field of motor vehicles, for providing electricity to consumers having moderate power consumption levels, such as for example for supplying control units, loudspeakers, or an interior lighting system.
Due to the flat extension of the flexible circuit, it is essentially suitable only for laying in a straight line. A change of direction of the flexible circuit in the plane of its flat extension is problematic. In particular given a sharp diversion, there is the danger that in the region of the diversion the individual printed conductors will become buckled, or the flexible circuit will be exposed to an excessive mechanical load.
U.S. Pat. No. 5,130,499 (see European published application EP 0 454 272 A1) describes a holding device for a flexible circuit with the aid of which a film conductor pattern, made up of a plurality of film conductor segments, can be held in a folded position. In the holding device, two sub-chambers, separated by a dividing wall, are enclosed between outer to walls. The dividing wall has a first bending edge, around which the film conductor is wrapped. The one outer wall has at its edge an additional, second bending edge situated at a right angle to the first bending edge, around which second edge the film conductor is bent a second time. The holding device as a whole is fashioned in the manner of a housing into which the film conductor must be inserted. For this, it is necessary to fold the film conductor at the desired points already before pushing it into the holding device. This is costly, and also there is the danger that the folding points will not be made at precisely the desired point, or that they will not lie exactly on the bending edges; this can result in exposure of the film conductor to higher loads than are necessary.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a diverting apparatus for a flat flexible circuit, which overcomes the above-mentioned disadvantages of the heretofore known devices and methods of this general type and which enables simple and reliable laying of a ribbon cable, in particular of a film conductor.
With the foregoing and other objects in view there is provided, in accordance with the invention, a diverter device for a flexible circuit, comprising:
a base flap;
a diverter flap formed with a diverting edge connected to the base flap; and
a protective flap connected to the base flap;
wherein the base flap, the diverter flap, and the protective flap are pivotally connected such that, in a final assembly state, when the flexible circuit is in place, a guide region is formed between the base flap and the diverter flap about which the flexible circuit is guided, and which extends up to a diverting region for diverting the flexible circuit formed between the diverting edge and the protective flap.
In other words, the objects of the invention are achieved with a diverter device for a flexible circuit, in particular for a film conductor, also referred to as a holding clip. The clip has a base flap, a diverter flap having a diverting edge, and a protective flap. The flaps are thereby connected with one another in pivotable fashion, such that, with the flexible circuit laid between the base flap and the diverter flap, a guide region is formed in which the flexible circuit is guided, and that extends up to a diverter region that is formed between the diverting edge and the protective flap, in which region the flexible circuit is diverted.
In order to divert the film conductor, the conductor is preferably first laid on the base flap and is held in the guide region by connecting the base flap with the diverter flap. Subsequently, the film conductor is bent around the diverting edge situated on the diverter flap, and is held in this diverted position between the diverting edge and the protective flap.
The diverter device therefore enables a protective deflection of the film conductor in the plane of its flat extension. For this purpose, the film conductor is on the one hand guided through the diverter device in a defined manner. Through the defined bending of the film conductor in the bending or diverting region, an excessive mechanical loading is avoided.
Preferably, the film conductor is hereby clamped in at the guide region and in the diverter region between the respective flaps. For protective diverting, on the other hand, in the diverter region the film conductor is protected from mechanical damage from outside by the protective flap. In particular, the protective flap acts as protection against friction.
The diverter device is preferably made up of a single constructive unit fashioned as an injection-molded part, in which the individual flaps are for example connected with one another via film hinges. The construction as a unified component having a plurality of flaps connected with one another by hinges facilitates the placement of the film conductor into the diverter device, because it is not necessary that a plurality of separate components be connected with one another, or because a complicated threading in of the film conductor is not necessary.
In order to keep the loading of the film conductor low in the region of the diverting edge, this edge preferably has a rounded cross-section. A sharp buckling of the film conductor is thereby prevented.
Preferably, the diverter flap and the base flap each have a planar extension having two base sides and frontal sides situated opposite one another, whereby the base flap and the diverter flap are connected with one another at one of their base sides. In this construction, a lateral folding up of the base flap and of the diverter flap is therefore enabled. The film conductor is thereby preferably guided parallel to the base sides through the diverter device.
Usefully, for transverse folding of the film conductor the diverting edge is provided at one of the frontal sides of the diverter flap. At the same time, an angle of diversion for the flexible circuit is defined by the angle enclosed between one of the base sides and thus diverting edge. In this context, ‘transverse folding’ or ‘transverse diverting’ refer to the diverting of the film conductor at an angle to its longitudinal direction. The film conductor is accordingly placed around the diverting edge at a frontal side of the diverter device, in the final assembled state. Because the angle of diversion is defined by the angular relation between the base side and the frontal side, different diverter devices can be manufactured, having almost any desired diverter angles. In particular, a 90° diversion, or even a 180° diversion, of the film conductor is enabled by a suitable construction of the diverter device. For a construction that is as simple and symmetrical as possible, the base flap and the diverter flap are fashioned with identically corresponding base surfaces, so that in the final assembled state these two flaps are situated one over the other so as to fit precisely. The base surface thereby essentially defines the guide region. This surface is preferably fashioned as a parallelogram.
Preferably, the protective flap is situated on the frontal side, allocated to the diverter flap, of the base plate. For the clamping of the film conductor in the diverter region, the protective flap is simply pivoted closed, from the base plate in the direction onto the diverter flap.
According to a preferred construction, as an alternative the diverting edge is situated on the base side, facing away from the base flap, of the diverter flap. In this way, a longitudinal folding of the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Diverter device for a flexible circuit does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Diverter device for a flexible circuit, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Diverter device for a flexible circuit will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3165952

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.