Distributed voice user interface

Data processing: speech signal processing – linguistics – language – Speech signal processing – Application

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C704S275000

Reexamination Certificate

active

06408272

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The present invention relates generally to user interfaces and, more particularly, to a distributed voice user interface.
CROSS-REFERENCE TO MICROFICHE APPENDICES
A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent disclosure as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.
BACKGROUND OF THE INVENTION
A voice user interface (VUI) allows a human user to interact with an intelligent, electronic device (e.g., a computer) by merely “talking” to the device. The electronic device is thus able to receive, and respond to, directions, commands, instructions, or requests issued verbally by the human user. As such, a VUI facilitates the use of the device.
A typical VUI is implemented using various techniques which enable an electronic device to “understand” particular words or phrases spoken by the human user, and to output or “speak” the same or different words/phrases for prompting, or responding to, the user. The words or phrases understood and/or spoken by a device constitute its “vocabulary.” In general, the number of words/phrases within a device's vocabulary is directly related to the computing power which supports its VUI. Thus, a device with more computing power can understand more words or phrases than a device with less computing power.
Many modern electronic devices, such as personal digital assistants (PDAs), radios, stereo systems, television sets, remote controls, household security systems, cable and satellite receivers, video game stations, automotive dashboard electronics, household appliances, and the like, have some computing power, but typically not enough to support a sophisticated VUI with a large vocabulary—i.e., a VUI capable of understanding and/or speaking many words and phrases. Accordingly, it is generally pointless to attempt to implement a VUI on such devices as the speech recognition and speech output capabilities would be far too limited for practical use.
SUMMARY
The present invention provides a system and method for a distributed voice user interface (VUI) in which a remote system cooperates with one or more local devices to deliver a sophisticated voice user interface at the local devices. The remote system and the local devices may communicate via a suitable network, such as, for example, a telecommunications network or a local area network (LAN). In one embodiment, the distributed VUI is achieved by the local devices performing preliminary signal processing (e.g., speech parameter extraction and/or elementary speech recognition) and accessing more sophisticated speech recognition and/or speech output functionality implemented at the remote system only if and when necessary.
According to an embodiment of the present invention, a local device includes an input device which can receive speech input issued from a user. A processing component, coupled to the input device, extracts feature parameters (which can be frequency domain parameters and/or time domain parameters) from the speech input for processing at the local device or, alternatively, at a remote system.
According to another embodiment of the present invention, a distributed voice user interface system includes a local device which continuously monitors for speech input issued by a user, scans the speech input for one or more keywords, and initiates communication with a remote system when a keyword is detected. The remote system receives the speech input from the local device and can then recognize words therein.
According to yet another embodiment of the present invention, a local device includes an input device for receiving speech input issued from a user. Such speech input may specify a command or a request by the user. A processing component, coupled to the input device, is operable to perform preliminary processing of the speech input. The processing component determines whether the local device is by itself able to respond to the command or request specified in the speech input. If not, the processing component initiates communication with a remote system for further processing of the speech input.
According to still another embodiment of the present invention, a remote system includes a transceiver which receives speech input, such speech input previously issued by a user and preliminarily processed and forwarded by a local device. A processing component, coupled to the transceiver at the remote system, recognizes words in the speech input.
According to still yet another embodiment of the present invention, a method includes the following steps: continuously monitoring at a local device for speech input issued by a user; scanning the speech input at the local device for one or more keywords; initiating a connection between the local device and a remote system when a keyword is detected; and passing the speech input, or appropriate feature parameters extracted from the speech input, from the local device to the remote system for interpretation.
A technical advantage of the present invention includes providing functional control over various local devices (e.g., PDAs, radios, stereo systems, television sets, remote controls, household security systems, cable and satellite receivers, video game stations, automotive dashboard electronics, household appliances, etc.) using sophisticated speech recognition capability enabled primarily at a remote site. The speech recognition capability is delivered to each local device in the form of a distributed VUI. Thus, functional control of the local devices via speech recognition can be provided in a cost-effective manner.
Another technical advantage of the present invention includes providing the vast bulk of hardware and/or software for implementing a sophisticated voice user interface at a single remote system, while only requiring minor hardware/software implementations at each of a number of local devices. This substantially reduces the cost of deploying a sophisticated voice user interface at the various local devices, because the incremental cost for each local device is small. Furthermore, the sophisticated voice user interface is delivered to each local device without substantially increasing its size. In addition, the power required to operate each local device is minimal since most of the capability for the voice user interface resides in the remote system; this can be crucial for applications in which a local device is battery-powered. Furthermore, the single remote system can be more easily maintained and upgraded with new features or hardware, than can the individual local devices.
Yet another technical advantage of the present invention includes providing a transient, on-demand connection between each local device and the remote system—i.e., communication between a local device and the remote system is enabled only if the local device requires the assistance of the remote system. Accordingly, communication costs, such as, for example, long distance charges, are minimized. Furthermore, the remote system is capable of supporting a larger number of local devices if each such device is only connected on a transient basis.
Still another technical advantage of the present invention includes providing the capability for data to be downloaded from the remote system to each of the local devices, either automatically or in response to a user's request. Thus, the data already present in each local device can be updated, replaced, or supplemented as desired, for example, to modify the voice user interface capability (e.g., speech recognition/output) supported at the local device. In addition, data from news sources or databases can be downloaded (e.g., from the Internet) and made available to the local devices for output to users.
Other aspects and advantages of the present invention will become apparent from the following descriptions and accompanying drawings.


REFERENCES:
pat

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Distributed voice user interface does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Distributed voice user interface, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Distributed voice user interface will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2956389

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.