Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Railway vehicle
Reexamination Certificate
2001-05-18
2003-04-29
Black, Thomas G. (Department: 3663)
Data processing: vehicles, navigation, and relative location
Vehicle control, guidance, operation, or indication
Railway vehicle
C246S158000, C246S162000, C246S131000, C246S176000, C246S220000, C104S130010, C340S994000
Reexamination Certificate
active
06556898
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a system for monitoring and controlling one or more track networks to effect the safe and efficient movement of one or more railway vehicles on a plurality of track sections of the one or more track circuits.
2. Description of the Related Art
A prior art system for controlling the movement of one or more railway vehicles or trains on a track circuit typically includes a number of discreet elements distributed along the track circuit for sensing and controlling the position of track switches and for sensing and controlling the movement of trains. These sensing and control elements include, without limitation, switch machines coupled to track switches for monitoring and controlling the position thereof, vehicle presence detectors for detecting the presence of trains on sections of the track circuit and traffic lights. These sensing and control elements are well-known in the art and, therefore, will not be described in detail herein.
In a prior art system for controlling the movement of one or more trains on the track network, the sensing and control elements are connected to a central office which includes appropriate electrical and electronic computer controlled hardware operating under the control of a software program to acquire the output of the sensing elements; to process the output of the sensing elements as a function of a desired movement of one or more trains on the track network; and to control the control elements to effect the safe and efficient movement of the one or more trains on the track network.
A problem with the prior art systems for controlling the movement of one or more trains on a track network is that the central office is often located more than 1,000 feet away from the sensing and control elements associated with the track circuit. To this end, it has been observed that an average distance between the central office and the sensing and control elements is on the order of 1,500 feet. Because the central office is connected directly to each sensing and control element, a cable having a large number of wires, e.g., stranded and/or solid wires, must be connected between the central office and the sensing and control elements. Moreover, this cable must include wires of different gauges for conveying sensing signals, which can be conveyed over a smaller diameter wire, and for conveying control or energizing signals, which must be conveyed over larger diameter wires. Because of the possible number of wires included in a cable and the length of the cable, these cables can be expensive to prepare and install. In addition, because of the wide variations of sensing and control elements that may be needed for different track circuits, it is not practical or cost effective to build cables having a standard number of wires and/or a standard length in a manufacturing environment, where such cables could, if standardized, be manufactured both practically and cost effectively.
It is, therefore, an object of the present invention to overcome the above problems and others by providing a distributed control system for monitoring and controlling the sensing elements and controlling control elements associated with a track network. Still other objects will become apparent to those of ordinary skill in the art upon reading and understanding the following detailed description.
SUMMARY OF THE INVENTION
Accordingly, I have invented a system for controlling the movement of one or more vehicles or trains on a track network. The system includes a plurality of switch machines, with each switch machine outputting a switch position signal indicative of the state of a track switch associated with the switch machine in one of a plurality of positions, and receiving a switch control signal related to a desired state of the track switch in one of the plurality of positions. A local controller is connected to receive from each switch machine its switch position signal and to output a first communication signal including switch position data corresponding to the switch position signal output by at least one switch machine. The local controller also receives a second communication signal including switch control data corresponding to a desired state of at least one track switch, and outputs to the switch machine associated with the at least one track switch, as a function of the switch control data, the switch control signal. Lastly, a central office is connected to receive the first communication signal and to output the second communication signal as a function of the first communication signal and the desired movement of one or more vehicles on the track network.
At least one traffic light can be connected to the local controller. The traffic light can have a plurality of states, and the second communication signal can also include traffic light control data corresponding to a desired state of the traffic light. The local controller can output to the traffic light, as a function of the traffic light control data, a traffic light control signal related to the desired state of the traffic light.
At least one vehicle presence detector can be connected to the local controller. The vehicle presence detector can output to the local controller a vehicle presence signal corresponding to the presence of a vehicle on the track network. The first communication signal can include vehicle presence data corresponding to the vehicle presence signal output by the vehicle presence detector.
Preferably, at least one of the first communication signal and the second communication signal is a network protocol communication signal. The local controller is preferably positioned closer to the plurality of switch machines than the central office.
The local controller can include a first programmable controller and a second programmable controller connected for at least one of (i) operation redundant mode of operation where each of the first and second programmable controller compares the switch position signal from each switch machine, outputs the first communication signal, receives the second communication signal, and compares the switch control data; and (ii) a fail-safe redundant mode of operation where the first and second programmable controllers coact to output the switch control signal which comprises a pair of voltages which cause the switch machine to switch the track circuit to a desired state.
I have also invented a distributed control system for a track network. The distributed control system includes a local controller connected to a plurality of switch machines and a central office. Each switch machine is configured to monitor and control the state of at least one track switch associated therewith. The central office is configured to control the movement of vehicles on the track network. The local controller is configured to receive from each switch machine a switch position signal and to output to at least one switch machine a switch control signal related to a desired state of the track switch associated with at least one switch machine in one of a plurality of positions. The local controller is further configured to output to the central office a first communication signal including switch position data corresponding to the switch position signal output by the at least one switch machine and to receive from the central office as a function of the first communication signal and a desired movement of one or more vehicles on the track network a second communication signal which includes switch control data corresponding to the switch control signal output to the at least one switch machine.
Preferably, at least one vehicle presence detector is connected to the local controller. The vehicle presence detector is configured to output to the local controller a vehicle presence signal related to the presence of a vehicle on the track network. The first communication signal can include vehicle presence data related to the vehicle presence signal output by the vehicle presence detector. At least one traffic light can
Black Thomas G.
Bombardier Transportation GmbH
To Tuan C
Webb Ziesenheim & Logsdon Orkin & Hanson, P.C.
LandOfFree
Distributed track network control system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Distributed track network control system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Distributed track network control system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3001154