Distributed selectable latent fiber optic sensors

Communications: electrical – Wellbore telemetering or control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C340S853300, C340S854700, C359S199200, C359S199200

Reexamination Certificate

active

06271766

ABSTRACT:

TECHNICAL FIELD
This invention relates to fiber optic pressure sensors, and more particularly to a selectable optical sensors.
BACKGROUND ART
Various sensing technologies exist for measuring various physical parameters in the environment of an oil well such as pressure and temperature, such as electronic strain gauge, quartz-based oscillation, distributed temperature sensing (e.g., using Raman back-scattering or Bragg gratings), or distributed optical pressure sensing using Bragg gratings, such as is discussed in Ser. No. 08/925,598 entitled “High Sensitivity Fiber Optic Pressure Sensor for Use in Harsh Environments” to Robert J. Maron, or distributed optical liquid fraction sensing using fiber optics, such as is discussed in and Ser. No. 09/105,534 entitled “Fluid Parameter Measurement in Pipes Using Acoustic Pressures”.
In certain sensing applications, such as applications in the oil and gas industry, it may be desirable to sense different parameters, the same parameter, or different locations, at different times in the life of an oil well. For example, it may initially be desirable to sense pressure at a single or limited number of locations within a well when the well is first placed into production. Later in the life of the well, it may be desirable to sense pressure and temperature on a distributed basis within the well. Alternatively, it may be desirable to sense different parameters of interest later in the life of the well such as liquid fraction, dynamic pressure.
From a well operator's point of view, it is undesirable to pay for information that is not needed. Therefore, the well operator may be willing to pay a premium for certain information early in the life of a well, and other different information later in the life of a well. However, it is extremely costly to intervene in an operating well to install sensors and equipment because of lost production when the well is being worked and the cost of actually doing the work, particularly in harsh environments, such as on an off shore platform.
SUMMARY OF THE INVENTION
Objects of the present invention include provision of a sensor which can be selectively interrogates on demand without intervention.
According to the present invention, a distributed selectable fiber optic sensing system, comprises an optical fiber; a plurality of optical sensors, each sensor connected to said optical fiber and each sensor using only optical signals to measure sensed parameters, predetermined ones of said sensors receiving an optical source signal, and each providing at least one characteristic return optical signal, a parameter of said return optical signal being indicative of a sensed parameter; and an optical instrumentation device, connected to said optical fiber, which provides said optical source signal to predetermined ones of said sensors, which receives said return optical signal, and which provides an output signal indicative of selected ones of said sensed parameters, said selected ones of said sensed parameters being less than a total number of said sensed parameters.
According further to the present invention, the instrumentation device selects the selected ones of the sensed parameters based on a selection signal having a selection status corresponding to each of the sensors. According further to the present invention, the status of the selection signal is determined based on whether a user desires to retrieve the sensed parameter. According further to the present invention, the status of the selection signal is determined based on whether a user will pay for the sensed parameter. According further to the present invention, the status of the selection signal is provided from a location remote from the instrumentation device. According still further to the present invention, the status of the selection signal is provided from a location remote to the instrumentation device via a remote link. According still further to the present invention, at least one of the sensors comprises at least one Bragg grating embedded therein.
According to a second aspect of the present invention, a method of paying for use of an optical sensing system, comprises the steps of installing a plurality of fiber optic sensors; providing data to a user for a selected ones of the sensors; and the user paying for the selected sensors.
According further to the present invention, selecting the selected sensors based on a selection signal corresponding to each of the sensors. According further to the present invention, receiving a selection signal corresponding to each of the sensors, which determines the selected sensors.
According to a third aspect of the present invention, a method of billing for use of an optical sensing system, comprises the steps of installing a plurality of fiber optic sensors; providing data to a user for a selected ones of the sensors; and billing the user for the selected sensors.
According further to the present invention, selecting the selected sensors based on a selection signal corresponding to each of the sensors. According further to the present invention, receiving a selection signal corresponding to each of the sensors, which determines the selected sensors.
The present invention provides distributed selectable patent fiber optic sensing system which are activated, enabled, excited, illuminated interrogated, or otherwise provides data to a user (or well operator) on demand. This may be part of a system where the user pays for only the sensor data retrieved from the sensor or instrumentation. Such a system allows the user to install latent (or dormant) sensors when the well is drilled that are accessed by the user only when they are needed, thereby saving significant expense later in the well life when more or different sensors and/or parameters are needed to be sensed by the user. The invention also allows for automatic sensor selection reconfiguration without user intervention.
A sensor may be de-selected (or inactivated or “off”) using the instrumentation at the surface, for example, by not illuminating the sensor at its characteristic wavelength, or by not converting the optical signals from such sensor to electrical signals, or by not providing sensor output data on the display screen or to the remote link, or by otherwise interrupting the sensor output data to the user. When a dormant sensor is selected (or activated or “on”), data from such sensor is provided by such instrumentation to the user and the price charged to the user is adjusted accordingly. Alternatively, the sensor selection signal may shut off all sensors (or all sensor data) if a bill is not paid by the user. The cost to (or payment by) the user may be based on the number of sensors selected, the amount of data provided or the length of time the data is provided, similar to that which is done for a utility company, a cable TV company, an internet service provider or the like. Alternatively, the sensor data may be selected from a remote site such as by satellite communications and/or by the internet which will trigger billing the user at a price indicative of the sensors activated.
Also, one or more gratings, fiber lasers, or a plurality of fibers may be used in the sensors. Also, the invention may be used with any type of sensing such as such as pressure, temperature, liquid fraction, flow, acoustic, seismic, resistivity, corrosion, pipe wall build-up (e.g., wax, paraffins, asphaltenes, scales, hydrates or other hydrocarbon by-products), or other parameters.
The foregoing and other objects, features and advantages of the present invention will become more apparent in light of the following detailed description of exemplary embodiments thereof.


REFERENCES:
patent: 4491983 (1985-01-01), Pinnow et al.
patent: 4636031 (1987-01-01), Schmadel. Jr. et al.
patent: 4864489 (1989-09-01), Yasuhara et al.
patent: 4915467 (1990-04-01), Berkey
patent: 5007705 (1991-04-01), Morey et al.
patent: 5042898 (1991-08-01), Morey et al.
patent: 5235659 (1993-08-01), Atkins et al.
patent: 5399854 (1995-03-01), Dunphy et al.
patent: 5469520 (1995-11-01), Morey et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Distributed selectable latent fiber optic sensors does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Distributed selectable latent fiber optic sensors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Distributed selectable latent fiber optic sensors will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2484007

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.