Surgery – Diagnostic testing – Cardiovascular
Reexamination Certificate
2000-12-29
2003-07-15
Layno, Carl (Department: 3762)
Surgery
Diagnostic testing
Cardiovascular
C600S300000
Reexamination Certificate
active
06594519
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to a distributed multi-user system for real time data access during cardiology procedures and, more particularly, to an interactive computer network which can be used to simultaneously display and annotate data from a cardiology procedure on a plurality of devices and at a plurality of locations during a cardiology procedure.
2. Background of the Related Art
State of the art test and treatment facilities are essential to providing accurate monitoring, diagnoses, and treatment of heart disease. Medical facilities are often equipped to monitor and diagnose both mechanical and electrical defects in the heart. The present system relates to the monitoring of the heart's electrical activity.
The heart is a muscle and, like other muscles, it contracts when it is electrically stimulated. Unlike other muscles, however, the heart has its own electrical system which can generate electrical impulses to stimulate the contraction of the muscle and thus keep the heart beating in rhythmic sequence so blood is continually pumped throughout the body.
An electrophysiology study (EPS) is an invasive test involving the monitoring of the electrical signals in the heart. When defects in the heart tissue interfere with the normal formation or conduction of the heart's electrical activity, abnormal heart rhythms, known as cardiac arrhythmias, may develop. Cardiac arrhythmias may be caused by congenital defects, tissue damage due to heart attacks, or diseases such as arteriosclerosis (the deposition of fatty substances in the inner layer of the arteries) for instance, which accelerate, delay, or redirect the transmission of electrical activity, thereby disrupting the normal rhythmic contractions of the chambers of the heart. The electrophysiology study is used to assist in evaluating cardiac arrhythmias.
The basic electrophysiology procedure involves the recording and pacing of electrical signals within localized areas of the heart. During this study, catheters are placed near critical areas of the heart to record the heart's electrical signals. The heart is paced in various ways to study the speed and location of the flow of electricity within the heart. Typically, the study is used to determine if the heart has a tendency to pump faster or slower than normal and if the rhythm is dangerously irregular and thus requires treatment. Therapies for various rhythm disorders include medication, catheter ablation of the pathway, pacemakers, and defibrillators.
Tachycardia is an arrythmia characterized by an abnormally fast heart rate (more than one-hundred beats per minute). Tachycardia falls into two categories, ventricular tachycardia (VT) and supra-ventricular tachycardia (SVT). VT is tachycardia that originates in the ventricles of the heart. SVT originates in the atria or at the junction between the atria and the ventricles of the heart. VT is a potentially life-threatening condition caused by either abnormally rapid impulse formation or by slow ventricular conduction which interferes with the heart's normal electrical activity and causes abnormally frequent contractions in the ventricles. Rapid ventricular contractions often result in significantly reduced cardiac output due to the inefficient pumping of the blood from the heart. As a result, the body receives an inadequate supply of oxygen which may cause dizziness, unconsciousness, cardiac arrest, or death.
Patients suspected of suffering from VT are initially screened by a cardiologist (doctor specializing in the heart) by means of external cardiac monitoring, typically in the form of an electrocardiogram. An electrocardiogram captures electrical activity from surface leads placed on the patient's chest for twenty-four hours. When further testing is warranted, the patient is referred to a cardiac electrophysiologist (cardiologist who specializes in the electrical functioning of the heart) for an EPS.
An EPS evaluates the electrical integrity of the heart by stimulating multiple intra-cardiac sites and recording the electrical response. During an EPS, a patient's clinical tachycardia is induced in a controlled setting to diagnose the tachycardia and select an appropriate treatment or combination of treatments. EP studies using currently available technology are often lengthy and tedious procedures which include probing the interior of two or more chambers of the heart with single point contact catheters which may cause significant discomfort for the patient. However, single point contact catheters have limited utility in diagnosing complex tachycardia. The limited data produced in point by point mapping often fails to provide the electrophysiologist with sufficient diagnostic power for a complete understanding of the tachycardia.
One form of treatment of VT and SVT type arrhythmias which is becoming increasingly popular is catheter ablation. During the ablation (or “elimination”) procedure which is similar to the procedure used in the EPS, a special catheter is inserted into the patient to deliver energy, such as radio frequency (RF) energy, to the precise areas of the heart which have been identified to cause the abnormal heartbeat. The tip of the catheter is heated to facilitate the destruction of the surrounding tissue thereby correcting the anomalous circuit within the heart which is causing the abnormal electrical activity. Catheter ablation is a potentially curative treatment which is continually being developed.
To perform procedures such as the EPS or catheter ablation, a cardiac catheterization lab is provided in which multiple clinicians can diagnose and treat heart conditions. It is desirable to provide the clinicians with a means to interact with, manipulate, and document observations on the clinical data in a study record. It would be advantageous for clinicians to be able to interact with the clinical data and document observations simultaneously during an EP procedure. Such clinicians may include a primary physician, nurse, anesthesiologist, cardiovascular technician, radiology technician, consulting physician, and so forth. For example, it may be necessary for the primary physician or cardiovascular technician to make measurements on intracardiac, hemodynamic, or imaging data, while the nurse or anesthesiologist documents the status of the patient for a report or a consulting physician makes measurements at a remote location on a network system. It would be advantageous for several clinicians to be able to simultaneously view the data during the EP procedure and to be able to annotate and document the reports as necessary. The annotations should be available to all clinicians presently viewing a particular study. Current techniques to accommodate the complex workflow in a cardiac catheterization lab are insufficient to meet these needs.
One current technique used in a cardiac catheterization lab employs disparate systems which provide copies of studies which may be separately annotated and later integrated. Different clinicians document their clinical observations into different systems which are later integrated into an overall clinical information system. This approach has several disadvantages. First, clinicians do not have the advantage of seeing the dynamic relationship among data entered by other clinicians during the study which especially limits the potential contribution of a consulting physician who may be stationed at a remote facility. Second, the detail and context of the clinical data may be diluted during the integration. Third, report generation is often delayed while the integration process is performed, which often takes several days to complete. Fourth, having multiple systems creates more costs and requires more training for clinical personnel. Further, additional time and effort by clinicians is required to perform the integration process.
A second method which may be currently employed in a cardiac catheterization lab is toggling control of data entry among terminals using a keyboard switch.
Kiser Ewin Michael
Stoycos Stephen T.
Fletcher Yoder & Van Someren
GE Medical Systems Information Technologies
Layno Carl
LandOfFree
Distributed real time catalog-based annotation and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Distributed real time catalog-based annotation and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Distributed real time catalog-based annotation and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3019102