Distributed operating system for controlling network element...

Electrical computers and digital processing systems: multicomput – Network-to-computer interfacing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C709S223000, C370S469000

Reexamination Certificate

active

06757745

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a distributed operating system for controlling network elements in a data or telecommunication network.
For the network operator of telecommunication networks, it is becoming more and more important to be able to provide the network users with what are known as network services or integrated value-added services, in addition to simple basic services such as transmission of voice or data. What is meant by this is that the combination and enhancement of the basic services, for instance the unique number in different networks (Universal Personal Number, stationary and permanent networks), forwarding and answering machine functions in the network, and many others.
A known technical solution is an intelligent network, which is controlled centrally by a network element, that is known as the SCP (Service Control Point). This is described in the protocol suite Q. 12xx of the ITU.
A significant disadvantage of intelligent network technology is the strong dependency on the central network element in particular. The highly cost-intensive usage of high-performance and fail-safe hardware, on the one hand, and what are known as backup systems, on the other hand—i.e. a doubling of the most important elements of the system (hardware and software),—is required in order to guarantee the necessary fail-safety in running operations.
SUMMARY OF THE INVENTION
It is the object of an invention to propose a solution as to how the network elements in an adaptive network architecture can be controlled and how value-added services can be provided network-wide and separately according to the provider. The above described disadvantages of the technology of intelligent networks should be avoided.
This and other objects are achieved by a distributed operating system controlled by a method connecting one or more higher ranking network elements in the network that provide network functions and services and providing that distributed network having system-independent interfaces, the distributed network integrating the network functions and services and basic services from lower ranking physical data networks via the one or more higher ranking network elements and making the network functions and services and basic services available to an upper most layer via the system independent interfaces.
The term physical base network refers to a homogenous network such as the telephone network (POTS) for the analog transmission of data such as speech, an ISDN network for digital transmission, the mobile telephone network, or the Internet, which is itself composed of individual networks.
A network operator is responsible for such a base network.
In the following comments, various terms are used for functions and services are described
a basic service is a basic service as provided to the user by the physical base network, potentially voice transmission in POTS, or the bearer services in ISDN;
a network function, on the other hand, is needed for operating a network and its services, though it is not directly visible to the user of network services. Traffic monitoring or routing belong to such functions, for example.
A network service is composed of basic services and possible enhancements (e.g. ISDN services).
An integrated value-added service is a network service that can be composed of network services even of different physical base network services. This can be provided by the network operator or by what is known as a service integrator as well.
An application refers to what is known as the application layer. Here the previously neutral network services and value-added services are adapted to the respective demand of the service provider and of the service user; such as, with respect to charging and tariff rating of services, for example
The communication with the physical base network is accomplished via the call of network functions, network services and basic services in the respective system-specific format. This refers to INAP (Intelligent Network Application Part), SS7(Signalling System No 7) or MAP (Mobile Application Part), for example.
A basic function is an additional function that is introduced by means of a new enhanced network architecture. It enables access to a physical base network or the distribution of the calls of the network services and functions that are distributed in the network, for example.
Neighboring network elements refers to such elements that are located in one logic level of the utilized network architecture. By contrast, a lower-ranking network element is at least one hierarchical level below the higher-ranking element.
The operating system of the present invention controls a data and communication network consisting of various lower-ranking physical base networks. These base networks consist of network elements which provide different network (basic) services and network functions and can be controlled with system-specific calls.
Accordingly, there exist corresponding higher-ranking network elements that are equipped with specific operating system components and which execute basic functions that are independent of the physical subnetworks, such as accessing the physical base network, distributing calls of basic services, and converting the calls into the corresponding system-specific formats (providing the interfaces). These higher-ranking network elements can be part of the existing physical networks or stand-alone network elements.
The interfaces that enable the accessing of the physical base services can be laid open on the system-independent side, such as in the form of a standardization of a unified access format, for example.
This structure of the data and communication networks distributes the control of the basic services, network services and value-added services to the network elements in that information needed for interworking is exchanged. The network elements can either be identical in structure or different.
In this way, the problems of centralized control such as those that exist in an intelligent network (reliability, availability, “bottleneck”, error tolerance) are avoided.
Furthermore, an integration of different basic services of different physical base networks is possible.
The insertion and removal of individual network elements or whole physical base networks should be possible without any problems. Therefore, the information that is stored in the network elements (in particular in the higher-ranking network elements) is regularly updated and distributed to the neighboring network elements in order to make it possible to coordinate the function and service calls. This relates not only to the insertion of new services and base networks (independent of manufacturer), but also to the modification of already existing services and base networks. This mode of functioning creates a flexibility that is a precondition for introducing ever new value-added services (particularly those consisting of combinations of basic services of different physical base networks).
For the distributed execution of functions, the distributed operating system can control the network elements according to the client-server principle. Each network element should be able to work either as client or server, which is guaranteed by a uniform structure of each network element.
This makes it possible to transport function and service calls through the network and to have the calls processed at the most suitable network element. It is also possible that network services and functions may be executed by several network elements.
An application call can be executed in a distributed manner. It may be necessary for this purpose to divide it into subfunctions or subservices in advance.
The operating system controls the execution of these functions and services in that the relevant network elements receive the function and service calls via the defined system-independent open interfaces and convert them into system-specific calls. This makes individual functions available in such a way that integrated value-added services can be formed from bas

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Distributed operating system for controlling network element... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Distributed operating system for controlling network element..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Distributed operating system for controlling network element... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3322293

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.