Distributed engine processing system

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – With indicator or control of power plant

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S115000

Reexamination Certificate

active

06665606

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a system that allows an engine to split its computer processing work between an on-board electronic engine control module and an off-board computer server. The off-board server is responsible for processing and storage on behalf of the electronic engine control module. The electronic engine control module remains responsible for collecting engine data, forwarding that data to the server, taking corrective action sent by the server, and maintaining those processing needs necessary to continue the operation of the engine (e.g. controlling the firing of the spark plugs and pistons, controlling the injection of fuel by fuel injectors, etc.).
In the internal combustion engine field, it is common practice to include an electronic engine control module (ECM) to provide electronic signals to the engine components, such as fuel injectors, EGR valve, air intake, and others. Through these electronic signals, the ECM continuously regulates the operation of the engine. In the early years of ECM usage, the module utilized specific unchangeable programs for controlling the operation of the engine.
In recent years, the ECMs have become field-programmable. This feature enables product enhancements to be made in existing ECMs at a greatly reduced cost. In a typical application, one generic control module can be programmed for many different applications, e.g., different engine ratings or different engine applications. These changes can be made without any alterations to the physical configuration of the module.
Although ECMs are programmable, current engine control modules are restricted to any memory and any computing power that is included as part of the module. These restrictions are the result of cost limitations wherein any additional computing power and/or additional memory would create a greater cost per item, with that greater cost being passed along to the customers. Cost versus power is a delicate balance, which has typically been tipped toward restricting power to maintain lower costs, thus resulting in the limited power of the ECMs seen today.
ECMs are capable of recording information relating to the engine and can prove to be excellent libraries of engine data and information relating to transactions, occurrences, and changes in the engine. However, the information obtained relates only to the engine in which the ECM is located. Under current methods, obtaining information relating to the entire engine population and maintaining that information in one location has proven to be very labor intensive. In order to obtain the data, a technician must download any data from the ECM to a hand-held unit and then further download that data to a personal computer (PC) or to a workstation. It can be seen that simply obtaining data from the ECM is a relatively long process. In order to maintain the data in one location, the data from all the PCs and workstations must be transmitted to a central server. Therefore, several steps between the ECM and the server are required to create any library of all engine data for an entire fleet of vehicles.
Additionally, obtaining data cannot be done while the vehicle is in operation since a physical connection is currently required to deliver that data from the ECM to the handheld unit and on down the chain. For safety reasons, such physical connections are virtually impossible without stopping and parking the vehicle. Beyond the labor-intensive nature of obtaining data, such data collection tasks are also an undue burden on the operators since each operator must stop and park his vehicle in order for the data to be downloaded.
A similar problem is that any changes to the engine, which may be necessary for improved engine performance, can only be accomplished when the vehicle is stopped, usually in a service area. For example, in interstate trucking applications, the performance requirements for engines traveling in a relatively flat state, such as Kansas, are vastly different from the necessary engine conditions for a more mountainous state, such as Colorado. In order for the engine characteristics to be changed to compensate for these new conditions, the operator must stop and make the adjustments manually through the use of handheld service tools. If the operator is unable to make the changes, then the operator must have someone else make those necessary adjustments, again using handheld service tools. The necessity for stopping to make the changes creates delays in the transit of goods and creates undue delays at the service areas for the operators of the vehicles. A system in which the changes may be made without stopping, or may be made via remote means, is greatly desired for such applications.
These are problems experienced by all ECMs currently in use. A system whereby the power of the ECM is increased without increasing cost and a system in which information is continuously downloaded and changes made to the engine without stopping the vehicle would be highly desirable. Such a system is even more desirable in situations where fleet vehicles are involved.
SUMMARY OF THE INVENTION
These problems are addressed by the present invention, a distributed engine processing system.
The present invention provides a distributed engine processing system, which includes a plurality of engines with an electronic engine control module located within each of the engines. The electronic engine control module is in substantially continuous communication with a server, which is located remotely from the electronic engine control module. There is included in the invention a means of communication between the electronic engine control module and the server.
The present invention further provides a method for distributing engine processing. The electronic engine control module downloads engine information to the server, which stores the engine data. The server then performs processing and analysis of the downloaded information from each engine and processing and analysis of the information downloaded by all engines.
The invention also provides a method for adaptation of the engine in response to the analyses by the server and a method for notification of the customer or owner of the engine of the changes made to the engine or any necessary services that should be performed on the engine. Both methods include storage of the information about actions and/or notifications in the ROM.
It is an object of the present invention to expand the non-real time processing and storage capabilities of the electronic engine control module by removing non-real time functions to an off-board server. Through the removal of the non-real time functions, the limited resources of the ECM may be directed to those processing needs, such as controlling engine functions, which are necessary to keep the engine operating. Consequently, the ECM can prove to be more efficient in those operations for which it maintains responsibility.
It is an additional object of this invention to allow virtually unrestricted computing power and memory to be available to the ECM via the computer network. This increase in computing power and memory does not have the undesired increase in cost that the addition of computing power or memory directly to the ECM has, thereby creating more powerful ECMs without the higher per unit cost. Therefore, the problem of the delicate balance between power and cost is eliminated since the customer has the best of both, an ECM having greater power via the network without the additional cost.
It is a further object of the present invention to facilitate the collection of data about an entire engine population. By using the ECM to communicate directly with the server, all data acquired by the ECM is periodically forwarded to the server. This transmission does not require the labor intensive, manual downloading to handheld units and personal computers that current ECMs require. In addition to the lack of manually downloading all of the data, all ECMs are communicating with one central server, thus all data is gathered in a si

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Distributed engine processing system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Distributed engine processing system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Distributed engine processing system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3166793

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.