Distance learning implementation

Electrical computers and digital processing systems: multicomput – Network computer configuring

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C709S204000, C709S203000

Reexamination Certificate

active

06356943

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to computer interconnectivity in general, and more specifically to an inter-network based system enabling training of multiple users at remote sites using stationary and geographically remote computer equipment.
BACKGROUND OF THE INVENTION
In modem computer implementations, there are frequently very specialized and expensive apparatus for which training of end users is required. Because of the cost of these apparatus, it is frequently not cost effective for a purchaser to divert the apparatus from its intended, specialized implementation in order for training to be performed. This is especially true where the equipment is implemented for a critical use, and cannot be diverted. Equally infeasible is for the manufacturer of the specialized equipment to transport, configure and implement an additional unit at the purchaser's site to facilitate training, or to transport the potentially numerous end users to a central training facility.
The notion of a distance learning arrangement using area networks is known. Interactive Distance Learning (IDL) is a proven training method that uses interactive technologies to allow instructors and students to communicate from geographically dispersed locations. Instruction can be transmitted through a business television network, point-to-point videoconferencing networks, or over the Internet or intranets. IDL allows one expert to transmit to and to train a potentially unlimited audience. Plus, it provides a means for immediately ascertaining audience comprehension and tracking overall training results. The classic IDL model is the transmission of training over these networks in an essentially broadcast-type manner, with feedback permitted back to the instructor. These prior art solutions, however, are not configured to allow multi-user point-to-point interface to a central processing apparatus from a remote site. That is, trainees at the remote site are typically not able to train in the real-time environment of the specialized, expensive apparatus. Again, transporting the specialized, expensive equipment or apparatus to the remote site for real-time environment training is cost prohibitive. In any event, installing such transported equipment might take weeks or months to install and configure, and would require many manhours provided by highly technically trained personnel.
Other prior art tools are predominantly configured for conferencing between different users over a network, or multipoint dataconferencing.
Multimedia telecommunications using multipoint dataconferencing involve the transport of information signals in a wide range of formats flexibly. Therefore, the communication protocol must not be confined to point-to-point operation between identical terminals but permit group working between many terminals which may be geographically dispersed and very diverse in their types. Such a protocol is defined in a series of ITU Recommendations collectively referred to as the T. 120 series. Such multimedia telecommunications does not address the problem of training remote trainees in the real-time environment of specialized, expensive apparatus.
Microsoft's® NetMeeting, which employs the T.120 standard, is perhaps the best known remote conferencing software available. Using NetMeeting, users in different locations with access to the Internet, or an intranet, can communicate via audio and video, and share Windows® based applications. While NetMeeting has been relatively successful in allowing collaboration over a network, the software is designed to allow several users to share data and to provide video telephony between conference participants. The software does not support multiple remote user access to a single resource and the independent transmission of data to a separate audiovisual device, such as an LCD projector. NetMeeting is designed to share screen behavior, and not to facilitate common interface sharing. Thus, while NetMeeting is potentially useful for collaborative use of a Window® application, and for transferring digital behavior from one user to another, it is ill-suited for distance learning where a central resource is to be shared by multiple remote users in real time. Further, because NetMeeting is designed to operate over the Internet or local intranet, the content data which is transmitted is subject to the T.120 standard for data conferencing, which is primarily designed for whiteboarding, chatting, and file transfer.
Other conferencing products include Atrium™ and Connectix Videophone. As with NetMeeting®, these programs do not solve the ongoing need for a transportable, remote client/central server solution for Distance Learning. None of the available conferencing products facilitate training of remote users in the real-time environment of an expensive, specialized apparatus centrally located some distance from the remote trainees.
SUMMARY OF THE INVENTION
The present invention provides an easily transportable, quickly deployable distance learning implementation for networked communication between centralized host processor equipment and specialized, expensive systems, and a remote classroom with a plurality of students.
According to the invention, a distance learning implementation is effected as a client/server solution with a centralized server facility and a remote client facility. The centralized server facility includes a first network with at least one host processor system and associated operating software. Each of the at least one host processor system(s), such as a mainframe, UNIX-based or Windows NT-based server, is configured in the network with at least one specialized apparatus, such as an Integrated Cache Disk Array, which represents an operating environment for purposes of training remote trainees. A gateway, in the form of a router, provides access to the centralized server facility network, and the at least one host processor system is selectably accessible through a switch in the server facility network.
In further accord with the invention each remote training facility network is configured as a client with a minimal amount of hardware to access the centralized server facility network over a standard digital communications network, such as an integrated services digital network (ISDN) line. Each remote training facility network comprises at least one portable computer, such as a laptop PC, interconnected via a hub router to the standard digital communications network. The remote training facility is easily configured and deconfigured by a training specialist.
Features of the invention include configuration of multiple remote training facilities that are easily portable as a result of minimized component configuration. The distance learning implementation empowers an organization to replicate the online experience that students will encounter when using the central resource, such as the real-time environment of a host system and/or expensive dedicated system, without incurring the costs (and risk) associated with transporting specialized, expensive equipment to a remote site for training, and without incurring the cost of transporting trainees to a centralized facility or premises housing the specialized, expensive equipment on which the trainees are trained. Training can be provided to a plurality of users, at low cost, at multiple remote sites using the real-time environment of a central resource including expensive, sophisticated hardware and software that is effectively protected by the limited access thereto. The remote site to which training is delivered can be virtually anywhere in the world with an appropriate connection type, including a client's own site, or even hotel and conference rooms. The training equipment according to the invention is highly and easily portable for use in any location, with scaleability and flexibility allowing easy upgrading or migration to different connectivity options or platforms as needs change. Minimal configuration changes and minimal recabling between sites is required over time, in one embo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Distance learning implementation does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Distance learning implementation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Distance learning implementation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2829746

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.