Displaying data

Data processing: vehicles – navigation – and relative location – Navigation – Employing position determining equipment

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S207000, C701S208000, C345S418000, C345S419000

Reexamination Certificate

active

06748323

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method and apparatus for displaying data, such as topographical data, and to a computer program for enabling display of such data. More particularly, the present invention relates to displaying data, such as topographical data, for efficient representation of data in a low-cost portable hand-held device.
2. Description of the Related Art
Portable mapping devices such as GPS (Global Positioning System) and PDAs (Personal Digital Assistants) are capable of displaying and manipulating digital maps. In addition to the roads, streets, rivers, lakes and other geographic features, these maps often display topographical information as well. However, topographical information is presented only as a set of topographical lines similar to the one that are used in conventional paper topographical maps. Therefore, a true value of the terrain elevation is known and stored only for the topographical lines that are stored for the map, e.g.—Garmin Hand-Held GPS Vista device. This makes it difficult to compute elevation at other points or to create new topographical lines for the elevation levels that are not pre-stored for the map. This also requires a large data storage if topographical lines with a high resolution are required.
At the same time, digital technology allows one to store in a computer and to manipulate a true 3D (3 Dimensional) digital elevation model where the elevation of any terrain point can be computed. However, up to now, such systems were available only for use with powerful PC (Personal Computer) machines having a lot of memory and significant processing power, e.g.—DeLorme Topo USA PC product.
U.S. Pat. No. 5,902,347, to Backman et al. and entitled Hand-held GPS-mapping Device, discloses a hand-held GPS mapping device containing a GPS receiver, a database capable of storing vector or bit-mapped graphics, a viewing port, an embedded processor, a simplified user interface, a data compression algorithm, and other supporting electronics.
U.S. Pat. No. 5,902,347, to Backman et al. discloses two features, namely, a device that allows to view map images in the bright sun light and a device which divides a bit image of a topographical map by tiles and then compresses each tile with regular image compression algorithins such as TIFF (Tagged Image File Format).
The first device is not relevant to the present invention. As to the second device, while the abstract thereof mentioned vector maps, this is only to include such map images under the first device—having a screen that can be viewed outside. The tile compression method of the second device is applicable only to the bit map images—photo images, of the map, that is, so called raster maps.
The Detailed Description of U.S. Pat. No. 5,902,347, to Backman et al. describes in much detail how a photo image of a map is divided into tiles and then compressed with TIFF. There is no discussion about any digital maps. In fact, a digital map cannot be divided into tiles by simply cutting a whole map. A digital map is built out of tiles from the beginning and they are usually not compressed in a conventional sense but are bit encoded to provide a maximum speed of map reconstruction.
By the time of the issuance of U.S. Pat. No. 5,902,347, to Backman et al., there were several commercial handheld GPS systems capable of displaying vector maps on the device screen. One of such devices, Nav 6000, was produced by Magellan from 1996. These vector maps were constructed from the tiles.
The present invention is not concerned with a bit image or with a vector map. Rather, the present invention deals with Digital Elevation Model data, which is a quite different from both. DEM allows computing true elevation in any point of the map while a photo image of a map does not allow retrieving any digital information about features such as road direction or elevation, etc.
In addition, the present invention allows one to create tiles of different size with different resolution of data, which depend on the zoom level where these tiles are intended to be used. Image data cannot be simply thinned out so creation of tiles with different internal resolution of the data is impossible and is not even mentioned in U.S. Pat. No. 5,902,347, to Backman et al.
SUMMARY OF THE INVENTION
In accordance with one aspect of the present invention, a cell compression structure is utilized such that each cell can be decompressed independent of the others. Then, the data can be decompressed on-the-fly only for those cells that are needed to provide data for the area displayed on the screen of the device and only for the zoom levels that are currently used.
In accordance with another aspect of the present invention, elevation data, for example, is compressed using off-line processing. An asymmetrical compression algorithm is utilized so as to emphasize simplicity in the decompression of the data by providing most of the processing during the off-line data compression, thereby allowing the use of high-power computing devices to compress the data and allowing simple display devices having limited computing capabilities to decompress the data.
In accordance with still another aspect of the present invention, lossy compression is utilized to increase the data compression ratio. Both the average (rms) and maximum data compression error or the average (rms) and relative data compression error are controlled. The limitation on the absolute data compression error may be achieved by storing explicit corrections for the grid points where a good fit cannot be achieved with a desired level of data compression.
In accordance with another aspect of the present invention, data is decompressed and recomputed to a new grid, which is parallel to the screen and with a grid step, which is comparable with the screen size and resolution of a map presentation on the screen. This allows quick image rotation for the “track up” map orientation as well as providing better performance by effectively reducing the number of grid points to the minimum necessary for a given screen size and resolution.
In accordance with yet another aspect of the present invention, the topographical lines, for example, are computed on-the-fly using the screen reference grid of the new grid noted above. The elevation lines step is created on-the-fly and can either be user-specified or automatically determined from the map scale.
In accordance with another aspect of the present invention, the elevation value can be determined in real-time for any map location presented on the display screen.
Lastly, in accordance with still another aspect of the present invention, the user can view an elevation profile of a selected road, street, trail, track, or any other line feature and can view an elevation profile along the line of travel or perpendicular to the line of travel or at any arbitrary angle with respect to the line of travel and at any distance from the current position.
These and other objects of the present invention may be effected by providing a portable hand-held data display device comprising: a CPU (Central Processing Unit); an entry device, a memory, and at least one RAM (Random Access Memory), a map data storage device such as SD card or similar device, all operatively connected to said CPU; optionally, a GPS (Global Positioning System) unit, operatively connected to said CPU, to receive GPS signals and generate, with or without help of the CPU a digital output to said CPU indicative of a position location of said display device in response to said received GPS signals or a receiver to receive a digital output indicative of a position location to be displayed on said display device; and a video controller and a display screen, said video controller to receive signals from said CPU and to output signals to said display screen to produce an image on said display screen in response to said received signals from said CPU; wherein true digital elevation data, for example, is arranged to be stored as compressed cells in said memory, said CPU d

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Displaying data does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Displaying data, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Displaying data will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3350658

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.