Illumination – Illuminated scale or dial
Reexamination Certificate
1999-12-14
2002-09-17
Quach-Lee, Y. My (Department: 2875)
Illumination
Illuminated scale or dial
C362S026000, C362S027000
Reexamination Certificate
active
06450656
ABSTRACT:
FIELD AND BACKGROUND OF THE INVENTION
The invention relates to a display unit, in particular for a motor vehicle, having a light source radiating into an optical conductor, in particular for backlighting of a transparent dial.
Display units of the above type are used, for example, as tachometers or pedometers in present-day motor vehicles and are generally known. The dial of such a display unit has markings in the form of numbers, symbols or scale marks which stand out from the remaining regions by their transparency or their coloring. This dial consists, for example, of a colored, preponderantly transparent film which is applied to the optical conductor. A lamp is arranged as light source behind the optical conductor. The lamp is used to launch into the optical conductor light which reaches a viewer through the dial.
It is disadvantageous in such a display unit that the dial regions adjacent to the light source are more strongly transilluminated than regions more remote from it. The dial is therefore transilluminated non-uniformly, with the result that, for example, the light source can be detected through the dial at a bright spot by the viewer and thus hinders readability. In practice, this disadvantageous is at least partially offset by a multiplicity of light sources arranged as uniformly as possible. In this case, the high outlay associated therewith, and the substantial space requirement are disadvantageous.
Furthermore, it is seen as disadvantageous in the case of such display units that even the smallest amount of damage, irregularities or soiling of the optical conductor become visible on the dial to the viewer. Soiling necessitates troublesome cleaning of the display unit. Furthermore, means for fixing the optical conductor on the dial can lead to formation of shadows which likewise have to be evened out.
SUMMARY OF THE INVENTION
The invention is based on the problem of configuring a display unit of the type mentioned at the beginning such that the dial can be lit with the smallest possible outlay without differences in brightness visible to a viewer.
This problem is solved according to the invention by virtue of the fact that the optical conductor is arranged essentially in a plane inclined with respect to the dial, the light source shining into a section of the optical conductor inclined away from the dial. As a result, a portion of the light led into the optical conductor is coupled out at its boundary surface, and the remaining portion of the light is guided inside the optical conductor further in the direction of the dial. In this case, a relatively large portion of the light emerges at the section of the optical conductor which is inclined toward the light source and is spaced relatively far from the dial, while a decreasing portion of the light emerges at a reduced spacing from the dial. The impression of brightness is thereby evened out for the viewer over the entire surface of the dial. In particular, in this case a light source shining into a section of the optical conductor suffices to enable a comparatively simple design to be achieved, which at the same time can be produced with a low outlay. Put simply, the optical conductor can be considered, on the one hand, as an optical conductor and, on the other hand, like an obliquely positioned mirror as reflector. Furthermore, damage or dirt particles on the outside of the optical conductor remain largely invisible to a viewer. Again, the uniform and bright emission of light also renders it possible to realize dials with a so-called positive representation, in the case of which dark, opaque numerals are arranged on the transparent, bright dial, so that the lighting of a pointer can be eliminated.
In this case, a particularly advantageous embodiment of the invention results from the fact that the optical conductor has a cross-sectional surface decreasing from a section of the optical conductor inclined toward the light source to a section of the optical conductor inclined toward the dial. Due to this essentially wedge-shaped form of the optical conductor, the light led into it strikes the boundary surface of the optical conductor at an increasingly steeper angle, as a result of which the reflection is reduced and an increasing portion of the light emerges from the optical conductor. It is thereby possible to achieve a quantity of light emerging uniformly over the entire length of the optical conductor, and thus optimum lighting of the dial.
A particularly useful development of the invention is also achieved when the optical conductor has a light outcoupling surface designed as a structured surface. It is possible by means of such a configuration of the outer surface to achieve pinpointed outcoupling of the light in a desired region. It is thereby also possible for specific subregions of the surface to be lit to be optically emphasized. The structured surface can be arranged in this case both on an outer surface of the optical conductor inclined toward the dial, and on an outer surface of the optical conductor inclined away from the dial. The structured surface can consist for this purpose of depressions, for example notches of different dimensions, a rough surface, a printed surface or a mat surface. In particular, the light outcoupling surface can also comprise a combination of differently structured surfaces, in order thus to achieve a different emergence of light in different sections of the optical conductor.
A development of the invention which is likewise particularly expedient is achieved by virtue of the fact that the optical conductor has at least one boundary surface which runs in its cross section and has an altered transmission. This boundary surface causes an intensified emergence of the incident light, thus achieving a brightness of a respective subregion which can be reliably determined in advance. Such boundary surfaces can be arranged for this purpose at a different spacing from one another which, in particular, can be made to be smaller in the region inclined toward the surface to be lit, with the result that a correspondingly increasing portion of the light led in is coupled out.
The optical conductor could have a cutout for guiding through a pointer shaft. A particularly favorable embodiment of the invention is, by contrast, also achieved by virtue of the fact that the optical conductor runs approximately helically from a plane set back from the dial to the plane of the dial. It is possible as a result to light a dial, for example an annular one, without differences in brightness, the pointer shaft being arranged in the central region, and the guidance of the light not being hindered thereby.
It is also particularly advantageous when the optical conductor bears against the dial with its section averted from the light source. As a result, the light can be led directly into the dial so that, on the one hand, it is possible to achieve a further increase in the brightness of the dial lit in such a way. On the other hand, the light for lighting further displays can be relayed to the display unit.
One embodiment of the invention is particularly useful by virtue of the fact that the light source is arranged on a printed circuit board together with the section of the optical conductor inclined toward the light source. As a result, the mounting operation can be substantially simplified, and thus a space-saving configuration can be achieved at the same time. For this purpose, the light source makes contact with the printed circuit board and shines directly into the optical conductor.
It is particularly favorable in this case when the section of the printed circuit board spanned by the optical conductor is provided for the arrangement of further electric components. As a result, the space available below the optical conductor can be optimally used, and thus the overall size of the display unit can be reduced.
An advantageous development of the invention is also achieved by virtue of the fact that the optical conductor has a middle section inclined toward the dial and two end sections inclined away fro
Farber Martin A.
Mannesmann VDO AG
Quach-Lee Y. My
LandOfFree
Display unit does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Display unit, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Display unit will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2853497