Telephonic communications – Diagnostic testing – malfunction indication – or electrical... – Of trunk or long line
Reexamination Certificate
1999-02-10
2001-12-11
Tieu, Binh (Department: 2643)
Telephonic communications
Diagnostic testing, malfunction indication, or electrical...
Of trunk or long line
C379S027010, C379S156000, C379S327000, C340S870030, C348S552000
Reexamination Certificate
active
06330307
ABSTRACT:
RELATED APPLICATIONS
This application is related to the following co-pending applications, the disclosures of which are incorporated into this specification by reference.
U.S. patent application Ser. No. 09/247,613, entitled SYSTEM AND METHOD FOR ADDRESSING AND TRACING PATCH CORDS IN A DEDICATED TELECOMMUNICATIONS SYSTEM
U.S. patent application Ser. No. 09/247,614, entitled SYSTEM AND METHOD OF OPERATION FOR A TELECOMMUNICATIONS PATCH SYSTEM;
U.S. patent application Ser. No. 09/247,269, entitled TRACING INTERFACE MODULE FOR PATCH CORDS IN A TELECOMMUNICATIONS PATCH SYSTEM;
U.S. patent application Ser. No. 09/247,270, entitled METHOD AND DEVICE FOR DETECTING THE PRESENCE OF A PATCH CORD CONNECTOR IN A TELECOMMUNICATIONS PATCH SYSTEM;
U.S. patent application Ser. No. 09/247,237, entitled METHOD AND DEVICE FOR DETECTING THE PRESENCE OF A PATCH CORD CONNECTOR IN A TELECOMMUNICATIONS PATCH SYSTEM USING PASSIVE DETECTION SENSORS;
U.S. patent application Ser. No. 09/404,420, entitled SYSTEM AND METHOD FOR IDENTIFYING SPECIFIC PATCH CORD CONNECTORS IN A TELECOMMUNICATIONS PATCH SYSTEM; and
U.S. patent application Ser. No. 09/404,619, entitled SYSTEM AND METHOD OF INTERCONNECTING TRACING INTERFACE MODULES TO A CENTRAL CONTROLLER IN A TELECOMMUNICATIONS PATCH SYSTEM.
BACKGROUND OF THE INVENTION
1. Field of the Invention
In general, the present invention relates to the structure of tracing systems that are used to trace patch cords in a dedicated telecommunications patching system. More particularly, the present invention relates to the displays that are used in such tracing systems that inform a technician as to the location of the ends of the patch cord being traced. The present invention also relates to systems that enable a technician to transmit and receive data with a telecommunications system from a remote location.
2. Description of the Prior Art
Many businesses have dedicated telecommunication systems that enable computers, telephones, facsimile machines and the like to communicate with each other, through a private network, and with remote locations via a telecommunications service provider. In most buildings, the dedicated telecommunications system is hard wired using telecommunication cables that contain conductive wire. In such hard wired systems, dedicated wires are coupled to individual service ports throughout the building. The wires from the dedicated service ports extend through the walls of the building to a telecommunications closet or closets. The telecommunications lines from the interface hub of a main frame computer and the telecommunication lines from external telecommunication service providers are also terminated within the telecommunications closets.
A patching system is used to interconnect the various telecommunication lines within the telecommunications closet. In a telecommunications patching system, all of the telecommunication lines are terminated within the telecommunications closet in an organized manner. The organized terminations of the various lines are provided via the structure of the telecommunications closet. Within the telecommunications closet is typically located a mounting frame. On the mounting frame is connected a plurality of racks. The telecommunications lines terminate on the racks, as is explained below.
Referring to
FIG. 1
, a typical prior art rack
10
is shown. The rack
10
retains a plurality of patch panels
12
that are mounted to the rack
10
. On each of the patch panels
12
are located port assemblies
14
. The port assemblies
14
each contain six RJ-45 telecommunication connector ports
16
.
Each of the different telecommunication connector ports
16
is hard wired to one of the system's telecommunications lines. Accordingly, each telecommunications line is terminated on a patch panel
12
in an organized manner. In small patch systems, all telecommunications lines may terminate on the patch panels of the same rack. In larger patch systems, multiple racks are used, wherein different telecommunications lines terminate on different racks.
In the shown embodiment of
FIG. 1
, the interconnections between the various telecommunications lines are made using patch cords
20
. Both ends of each patch cord
20
are terminated with connectors
22
, such as an RJ-45 telecommunication connector or a RJ-11 telecommunications connector. One end of the patch cord
20
is connected to the connector port
16
of a first telecommunications line and the opposite end of the cord is connected to the connector port
16
of a second telecommunications line. By selectively connecting the various lines the patch cords
20
, any combination of telecommunications lines can be interconnected.
In many businesses, employees are assigned their own computer network access number exchange so that the employee can interface with the companies main frame computer or computer network. When an employee changes office locations, it is not desirable to provide that employee with newly addressed telecommunication pots. Rather, to preserve consistency in communications, it is preferred that the exchanges of the telecommunication connection ports in the employee's old office be transferred to the telecommunications ports in the employee's new office. To accomplish this task, the patch cords in the telecommunication closet are rearranged so that the employee's old exchanges are now received in his/her new office.
As employees, move, change positions, add lines and subtract lines, the patch cords in a typical telecommunications closet are rearranged quite often. The interconnections of the various patch cords in a telecommunications closet are often logged in either paper or computer based log. However, technicians often neglect to update the log each and every time a change is made. Inevitably, the log is less than 100% accurate and a technician has no way of reading where each of the patch cords begins and ends. Accordingly, each time a technician needs to change a patch cord, that technician manually traces that patch cord between two connector ports. To preform a manual trace, the technician locates one end of a patch cord. The technician then manually follows the patch cord until he/she finds the opposite end of that patch cord. Once the two ends of the patch cord are located, the patch cord can be positively identified.
It takes a significant amount of time for a technician to manually trace a particular patch cord. Furthermore, manual tracing is not completely accurate and technicians often accidently go from one patch cord to another during a manual trace. Such errors result in misconnected telecommunication lines which must be later identified and corrected.
One of the primary functions of a patch cord tracing system is to clearly identify the location of the ends of the patch cord being traced. In a telecommunications rack, space is limited. Often patch panels are spaced closely together. Accordingly, the various connector ports in the telecommunications closet are also spaced closely together. In such tight quarters, a tracing location indication must be highly visible and must clearly identify only a single connector port.
A need therefore exists in the field of telecommunication patching systems for a tracing system that clearly identifies the ends of a traced patch cord in a crowded telecommunication closet.
SUMMARY OF THE INVENTION
The present invention is a graphics overlay for displaying the location of a traced connector port in a telecommunications patching system. The graphics overlay is the visible portion of a tracing interface module that is viewed by a technician performing a patch cord tracing procedure. The graphics overlay serves three primary functions. The first function is to provide is a visual indication that can inform a technician as to the location of a patch cord in a telecommunications patch system. The second function is to provide a trace button so that a technician can initiate a trace from any patch cord connect port in the patching system. Lastly, the third function is to identify the patch cord at ea
Bloch Brian Matthew
Choudhury Golam Mabud
Ensz Lyndon D.
German Michael Gregory
Macauley Daniel Warren
Avaya Technology Corp.
Gibbons Del Deo Dolan Griffinger & Vecchione
Tieu Binh
LandOfFree
Display panel overlay structure and method for tracing... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Display panel overlay structure and method for tracing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Display panel overlay structure and method for tracing... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2564115