Electric lamp and discharge devices: systems – Plural power supplies – Plural cathode and/or anode load device
Reexamination Certificate
2000-08-22
2003-02-25
Wong, Don (Department: 2821)
Electric lamp and discharge devices: systems
Plural power supplies
Plural cathode and/or anode load device
C315S326000, C385S031000
Reexamination Certificate
active
06525483
ABSTRACT:
BACKGROUND OF THE INVENTION
The invention relates to a display device comprising a light guide, a movable element and selection means to locally bring said movable element into contact with the light guide, said selection means comprising row and column electrodes and means for applying addressing voltages to the row and column electrodes.
A display device of the type mentioned in the opening paragraph is known from U.S. Pat. No. 4,113,360.
In said patent, a description is given of a display device comprising a first plate of a fluorescent material, in which, in operation, light is generated and trapped (so that this plate forms a light guide), a second plate which is situated at some distance from the first plate and, between said two plates, a movable element in the form of a membrane. By applying voltages to addressable electrodes on the first and second plates and to electrodes on the movable element, the movable element can be locally brought into contact with the first plate, or the contact can be interrupted. A transparent contact liquid is present on the contact surfaces. At locations where the movable element is in contact with the first plate, light is decoupled from said first plate. This enables an image to be represented. If the movable element is not in contact with the light guide, it is in contact with the second plate.
For the proper functioning of the display device, it is important that, on the one hand, the contact between the light guide and the movable element can be brought about and interrupted in an accurate and reliable manner, but that, on the other hand, the design is simple and does not require much energy to operate.
It is an object of the invention to provide a display device of the type mentioned in the opening paragraph, which provides a simple and yet reliable device.
To achieve this, the display device in accordance with the invention is characterized in that the selection means comprise means for applying voltages to the electrodes in dependence on a previously applied voltage or voltages on the electrodes.
In the known device, the position of the movable element, i.e. whether or not it makes contact with the light guide is dependent on the applied voltages, and on said voltages only. The inventors have realized that the fact whether or not the movable element moves is dependent on the forces acting on the element. The forces acting on a movable element are not only dependent on the applied voltages, but also on other forces acting on the element and on its position vis-á-vis the electrodes. Said position is also dependent on the history of the element, i.e. previously applied voltages and position. The electric forces acting on the movable element are non-linearly dependent on the distances between the movable element and the electrodes. Because of the non-linear relationship between force and distance, the device exhibits a memory effect. When the movable element is near one of the electrodes, only a relatively large voltage difference between the electrodes can move the element to the other electrode. This, however, also means that once a movable element is in a certain position, it will stay in such a position, even if the voltages applied are changed, provided that they do not change to such a large degree that the movable element is moved to the other electrode. Since the device exhibits a ‘memory effect’, i.e. it is not only the momentary voltages applied which determine whether or not the movable element moves, but this is also determined by previously applied voltages. Using this insight, one or a number of advantages can be obtained. The device can be simplified, and/or the addressing voltages applied to the device can be simplified and/or the energy required can be lowered and/or the reliability of the device can be increased. Also grey levels can be made, as will be explained.
A preferred embodiment of the device in accordance with the invention is characterized in that the means for applying addressing voltages apply, in operation, a first set of voltages having a lower and an upper value to a row electrode, and a second set of voltages having a lower and an upper value to a column electrode crossing the row electrode at a crossing area, the device being arranged in such a way that only simultaneous application of a lower value to the row electrode and an upper value to the column electrode, or vice-versa, changes the position of the movable element at the crossing area.
Alternatively, a preferred embodiment of the device in accordance with the invention is characterized in that the means for applying voltages apply, in operation, a first set of voltages having a lower and an upper value to a column electrode, and a second set of voltages having a lower and an upper value to a row electrode crossing the column electrode at a crossing area, the device being arranged in such a way that only simultaneous application of a lower value to the column electrode and an upper value to the row electrode, or vice-versa, changes the position of the movable element at the crossing area.
In these embodiments, application of an upper or lower value on one electrode (row or column) alone does not actuate the movable element at the crossing area of the relevant row and column electrodes. Only simultaneous application of a lower value on one of the electrodes, and an upper value on the other, or vice-versa, will actuate the element at the crossing area. Actuating the movable elements becomes very reliable by this measure. Small deviations of applied voltages do not inadvertently switch an element. Basically, only simultaneous application of two ‘on’ signals on row and column electrode(s) will turn a pixel ‘on’ when it is ‘off’, and simultaneous application of two ‘off’ signals on row and column electrode(s) will turn a pixel ‘off’ when it is ‘on’, as will be further explained in the description.
Preferably, the means for applying voltages apply, in operation, a turn-on addressing voltage to a row electrode, while simultaneously applying addressing voltages to a number of column electrodes crossing said first electrodes to bring the movable element in contact with the light guide at selected crossing areas of the row electrode, and subsequently apply said turn-on addressing voltage to a second row electrode while, simultaneously applying addressing voltages to a number of column electrodes crossing said first and second row electrodes to bring the movable element in contact with the light guide at selected crossing areas of the second electrode, the voltage at the first row electrode being in between the turn-on addressing voltage and a turn-off addressing voltage, such that the position of the movable elements at the crossing areas of the first row electrode does not change.
Alternatively, the means for applying voltages apply, in operation, a turn-on addressing voltage to a first column electrode, while simultaneously applying addressing voltages to a number of row electrodes crossing said first column electrode to bring the movable element into contact with the light guide, at selected crossing areas of the first column electrode and subsequently apply said turn-on voltage to a second column electrode, while simultaneously applying voltages to a number of row electrodes crossing said first and second column electrode to bring the movable element into contact with the light guide at selected crossing areas of the second column electrode, the voltage at the first column electrode being in between the turn-on addressing voltage and a turn-off addressing voltage, such that the position of the movable elements at the crossing areas of the first row electrode does not change.
A turn-on addressing voltage is understood to mean a voltage value which, when combined with a given (turn-on) voltage at a crossing electrode, results in bringing the movable element into contact with the light guide at the crossing area.
Likewise, a turn-off addressing voltage is understood to mean a voltage value which, when combined with a given turn-off voltage at a crossin
De Zwart Siebe T.
Van Gorkom Gerardus G. P.
Koninklijke Philips Electronics , N.V.
Vu Jimmy T.
Waxler Aaron
Wong Don
LandOfFree
Display device comprising a light guide with electrode... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Display device comprising a light guide with electrode..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Display device comprising a light guide with electrode... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3156137