Display apparatus comprising at least two projectors and an...

Liquid crystal cells – elements and systems – Liquid crystal system – Projector including liquid crystal cell

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C349S007000, C349S064000, C353S030000, C353S094000

Reexamination Certificate

active

06590621

ABSTRACT:

This invention relates to display apparatus and, more especially, this invention relates to display apparatus comprising at least two light valve display projectors which are each for providing a display.
Light valve projectors, and in particular liquid crystal display projectors, are becoming increasingly used for displays. Compared with cathode ray tube projectors, the liquid crystal projectors have the advantage of high brightness and relatively low cost. In addition, their red, green and blue displays generally emerge through a single lens, thereby avoiding the need to realign the colour convergence each time the projector is repositioned. Some liquid crystal display projectors have a single colour liquid crystal display panel, whilst others have separate liquid crystal display panels for red, green and blue, with the beams being combined optically on to a common axis prior to projection by the lens.
In order to generate a display providing a large field of view to the observer, displays from several projectors may be combined together by what is known as “tiling”. For many applications, it is essential for the joins between adjacent displays to be as inconspicuous as possible. It is difficult to form an inconspicuous join simply by butting adjacent displays together. Firstly, such an arrangement is very sensitive to any misalignment. Secondly, when used on non-flat screens as is frequently the case, the edges of adjacent displays will generally follow different curves on the screen, making it impossible to form a butted join.
A better approach to allow adjacent displays to overlap. Within the overlap region is a blend region in which the brightness of each display is adjusted so as to fall progressively from the maximum value at the inner edge of the blend to zero at the outer edge of the blend. With an appropriate choice of brightness profiles, it may be arranged for the brightness of the sum of the two displays to be essentially constant across the overlap region. This gives an inconspicuous blend which is also less sensitive to misalignment than a butted join. In the case of cathode ray tube projectors, this technique has been successfully used, with the brightness profile within the blend region being controlled electronically by adjusting the video level.
In the case of liquid crystal display projectors, adjustment of the brightness across the blend region by adjusting the video level is of limited use. This is because the liquid crystal display panels, which act as light valves, are not capable of totally blocking the light in response to a black level signal. This, together with the high brightness of liquid crystal display projectors, means that a “black” level display is still bright enough to be visible. Where two channels overlap, two black levels are superimposed, making the overlap noticeably brighter than the single display regions. If the displays are tiled both horizontally and vertically, there will also be regions where four black levels are superimposed. While a reasonable blend may be obtained by controlling the brightness electronically via the video when the scene content is bright, for lower brightness scenes, the quality of the blend becomes progressively worse. For this reason, it is preferable to use optical techniques for controlling the brightness of each display across the overlap region.
Optical techniques for controlling the brightness of each display across the overlap region have their limitations. The basic concept of optical blending may be understood by considering a mask located between the exit pupil of the projector and the screen. This gives rise to a progressive reduction in brightness for maximum to zero across the blend region. The zero level is now a true black since here the light is totally blocked by the mask. Thus this method overcomes the problem of achieving a good black level. By adjusting the distance of the mask from the projector, the required blend width may be obtained on the screen. It is not necessary for the mask to be located outside the projector. Other possible locations are just behind, or just in front of, the liquid crystal display panels. Again, the width of the brightness profile on the screen may be set as required by adjusting the distance of the masks from the liquid crystal display panels.
Although this method overcomes the black level problem, another problem arises due to a feature of liquid crystal display projectors. More specifically, in order to achieve high brightness, it is necessary to collect light from a large solid angle around the lamp. This is usually achieved by placing a parabolic or elliptical mirror behind the lamp in order to direct the light towards the liquid crystal display panels. In itself, however, this would give a dimmer central region of the display since the lamp obstructs any light reflected from the central region of the mirror, which is normally cut away anyway for insertion of the lamp. This is usually overcome by inserting some form of light integration optics between the lamp mirror and the liquid crystal display panels. Typically, this is a pair of plates containing lenslets. Each lenslet on the first plate combines with the corresponding lenslet on the second plate to spread the light over the entire liquid crystal display. The overall effect is to give good uniformity of illumination of the liquid crystal display, and hence good brightness uniformity of the projected display on the screen.
In order to couple the light efficiently into the projection lens, optics consisting of one or more field lenses are located in the region of the liquid crystal display panel to form an image of the second integrator plate at the projection lens entrance pupil. This means that the projector lens pupil is not illuminated uniformly, but rather consists of a pattern of bright spots corresponding to the light integrator lenslets. Therefore the brightness profile produced by the blending mask does not fall smoothly from maximum to zero, but has a rippled structure. The profile may vary from one projector to another, depending upon the alignment of the lamp, mirror, and integrator plates. Thus, when two such patterns are superimposed in an attempt to form a blend, this almost invariably gives rise to a significant brightness ripple across the blend.
It is an aim of the present invention to achieve a high quality optical blend by the above described means, but with a novel means of overcoming the problem arising from the inherent brightness non-uniformity across the exit pupil of light valve projectors such for example as liquid crystal display projectors and various other light valve projectors.
Accordingly, the present invention provides display apparatus comprising at least two light valve projectors which are each for providing a display, masks, and optical control means for controlling via the masks the brightness of each display across an overlap region formed by parts of the displays that overlap, the optical control means comprising an optical component which spreads light and which is positioned on an illumination side of a light valve display panel in each projector.
As indicated above, the optical component is located on the illumination side of the light valve display panel in each projector. The exact location is not critical, and it may be selected for various projectors on the basis of mechanical accessibility. Thus, for example, the optical component may be positioned adjacent the light valve display panel, for example positioned between the light valve display panel and a field lens.
The display apparatus may be one in which the optical component is a greyed or ground glass screen. Alternatively, the optical component may be a holographic light spreading component. Alternatively, the optical component may be a microlens array. Alternatively, the optical component may be a cylindrical lens array. Other types of optical component may be employed if desired.
Preferably, the light valve projectors are liquid crystal display projectors. Preferably, the light valve projector

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Display apparatus comprising at least two projectors and an... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Display apparatus comprising at least two projectors and an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Display apparatus comprising at least two projectors and an... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3106998

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.