Display and method for producing the same

Electric lamp and discharge devices: systems – Plural power supplies – Plural cathode and/or anode load device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C313S400000

Reexamination Certificate

active

06310441

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a display and a method for producing the same, based on the principle of the electronic tube which utilizes the discharge light emission of at least one of a gas and a light emitting substance enclosed in a formed product made of, for example, a glass material.
2. Description of the Related Art
In general, the light source, which utilizes the discharge light emission of at least one of the gas and the light emitting substance enclosed in a tube made of glass, includes electronic tubes such as mercury lamps, fluorescent tubes, sodium lamps, carbon arc lamps, zirconium discharge lamps, neon tubes, and flash discharge lamps.
The electronic tube as described above is manufactured, for example, such that an anode bar is fused to one end of a cylindrical glass tube, and then a cathode bar is fused to the other end of the glass tube in a predetermined gas atmosphere (atmosphere containing the gas to be enclosed) to enclosed the predetermined gas in the glass tube.
It is contemplated that such an electronic tube is utilized to display, for example, images and characters at the outdoor.
In such a situation, it is conceived that a large number of electronic tubes are arranged so that the light is selectively emitted from the electronic tubes. However, the respective electronic tubes exist as single members. Therefore, when the large number of electronic tubes are arranged, the scale is inevitably large. As a result, problems arise in that the installation space is enlarged, the wiring operation is complicated, and the production cost becomes expensive.
Under the circumstances, it is expected that the electronic tube itself is allowed to have a miniature size. However, if the electronic tube is miniaturized, then the distance between the anode and the cathode is decreased, and the pressure at the inside of the glass tube is further increased during the light emission. Therefore, it is necessary to increase the strength of the glass tube in association with the miniaturization of the electronic tube.
SUMMARY OF THE INVENTION
The present invention has been made taking the foregoing problems into consideration, an object of which is to provide a display which makes it possible to simultaneously realize the integration and the miniaturization of the electronic tube and present the display expression for information transmission at a high brightness.
Another object of the present invention is to provide a method for producing a display, in which it is possible to easily produce the display which makes it possible to simultaneously realize the integration and the miniaturization of the electronic tube and present the display expression for information transmission at a high brightness.
According to the present invention, there is provided a display comprising a housing formed by confronting at least two glass members with each other in a predetermined atmosphere and thermally gluing them under a pressure; at least one or more cavities formed in the housing and enclosed with at least one of a gas and a light emitting substance at its inside; and mutually confronting electrodes provided for the cavity interposed therebetween; wherein at least two or more of the cavities are arranged by the aid of at least one of the housing; and an output corresponding to an inputted signal is displayed in accordance with selective light emission effected in the cavities.
The cavity, in which at least one of the gas and the light emitting substance is enclosed, is formed in the housing which is manufactured by thermally gluing the glass members under the pressure. The electric power is applied to the electrodes which are opposed to one another with the cavity interposed therebetween. Thus, the discharge light emission is effected by at least one of the gas and the light emitting substance enclosed in the cavity. That is, one cavity functions as one electronic tube.
In the present invention, at least one housing is used to arrange at least two or more of the cavities. Therefore, when the cavities are arranged in conformity with the number of picture elements (image pixels) to be displayed, the discharge light emission is selectively effected by at least one of the gas and the light emitting substance enclosed in the cavities corresponding to the number of the picture elements, by selectively applying the electric power to the large number of electrodes confronting with each other with the cavities interposed therebetween, in accordance with the inputted image signal. Thus, the image, which corresponds to the image signal, is displayed on the display surface of the housing.
In this arrangement, the cavities are formed by thermally gluing the glass members under the pressure. Therefore, it is possible to integrate the large number of cavities at a high degree of integration, in accordance with which the miniaturization of the display can be easily realized.
As described above, according to the display concerning the present invention, it is possible to simultaneously realize the integration and the miniaturization of the electronic tube and present the display expression for information transmission at a high brightness.
In the arrangement described above, it is preferable that at least the glass member of the glass members for constructing the housing, which is disposed on a display side, is light-transmissive. Accordingly, the display surface of the housing is allowed to have the light-transmissive property. Therefore, it is possible to make the display expression at a high brightness for the output corresponding to the input signal. Thus, the display is most suitable, for example, as an electronic bulletin board installed at the outdoor.
In the arrangement described above, it is also preferable that the glass member of the glass members for constructing the housing, which does not contribute to display expression, is not light-transmissive. In this arrangement, the light components directed to the display surface of the housing, which are included in the light components radiated by the discharge light emission effected in the cavities, are radiated to the outside through the glass member having the light-transmissive property. However, the light components, which are directed to the surfaces other than the display surface of the housing, are absorbed by the glass member having no light-transmissive property.
Accordingly, it is possible to effectively avoid the crosstalk of light emission, which would be otherwise caused between the cavities. Thus, it is possible to effectively avoid the phenomenon which would otherwise result in the deterioration of image quality such as the image disturbance and the afterimage phenomenon.
In the arrangement described above, it is also preferable that a light-reflective film is formed on a surface portion except for a surface portion disposed on a display side, of an inner wall surface of the cavity. In this arrangement, the light components directed to the display surface of the housing, which are included in the light components radiated by the discharge light emission effected in the cavities, are radiated to the outside through the glass member having the light-transmissive property. However, the light components, which are directed to the surfaces other than the display surface of the housing, are reflected by the light-reflective surface. As a result, almost all of the light components generated in the cavity are directed to the display surface of the housing. Thus, it is possible to achieve a higher degree of brightness. Also in this arrangement, it is possible to effectively avoid the crosstalk of light emission, which would be otherwise caused between the cavities. Thus, it is possible to effectively avoid the phenomenon which would otherwise result in the deterioration of image quality such as the image disturbance and the afterimage phenomenon.
Further, a light-shielding substance may be allowed to intervene between the cavities. Accordingly, it is also possible to effectively avo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Display and method for producing the same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Display and method for producing the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Display and method for producing the same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2552968

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.