Dispensing valve for fluids

Dispensing – With resilient biasing means for outlet element – For elements reciprocable axially of discharge opening

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C222S509000, C251S339000, C267S161000

Reexamination Certificate

active

06491189

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to fluid dispensing apparatus and, more particularly, to a robust, relatively simple, low-cost, and easily actuatable dispensing valve for dispensing fluid from a source of such fluid, which valve may withstand sterilization procedures including irradiation up to 5.0 MRAD and high temperature steam and chemical sterilization processes without degradation of the integrity of the valve structure or operation, and thus may be used for dispensing a wide variety of products ranging from aseptic products (free from microorganisms), to sterile products, to non-sterile products.
2. Description of the Background
Dispensing valves for dispensing fluid from fluid containers, systems, or other sources of such fluid are shown by U.S. Pat. Nos. 3,187,965; 3,263,875; 3,493,146; 3,620,425; 4,440,316; 4,687,123; and 5,918,779. Such valves can be used, for example, in a system for dispensing beverages or other liquids used by consumers in the home. Low cost, trouble-free, and reliable valve action are significant considerations in these applications. Low cost is particularly important if the valve is to be sold as a disposable item as, for example, where the valve is provided with a filled fluid container and discarded along with the container when the fluid has been consumed.
In U.S. Pat. No. 3,187,965, a dispensing valve for a milk container is shown having a generally integral valve body connected at one end to the milk container. The valve body has an L-shaped passage formed therein defining an inlet opening at one end in communication with the milk container and at the opposite end a discharge outlet for discharging the milk to the exterior of the container. A plunger bore in the valve body provides means for slidably mounting a plunger member. A valve seal fixedly connected to the inner end of the plunger member can be moved by the plunger member to open and close the inlet opening. The opposite or outer end of the plunger member extends to the exterior of the milk container. A push button having a diameter substantially larger than the plunger member is mounted to the outer end of the plunger member and disposed in the valve body so that the push button is exposed for engagement by a user's finger. A compression type spring is engaged between the push button and the valve body. Thus, when a force is exerted against the push button to move the valve seal and open the inlet opening for dispensing milk from the container, the spring at all time exerts a substantial counter force on the push button for returning the valve seal to a closed position. The force exerted by the compression spring tends to increase directly with the inward displacement of the plunger member. Therefore, the user must exert considerable inward force on the push button to hold the valve open.
Another valve, shown in U.S. Pat. No. 3,263,875, uses a similar plunger member and valve body to that of the '965 patent. A resilient diaphragm having a peripheral portion engaged with the valve body acts both as a return spring and as a push button. Unfortunately, commercially-available valves having such diaphragmatic actuator members have in the past required the user to exert considerable force to hold the valve open while dispensing the liquid.
Likewise, commercial attempts have been made to provide low-cost dispensing valves for use with disposable containers, but such efforts have met with limited success. For example, Waddington & Duval Ltd. provide a press tap for use with disposable containers (such as wine boxes, water bottles, and liquid laundry detergent containers) under model designations COM 4452 and COM 4458, both of which provide a depressible button actuator operatively connected to a valve closure for moving the valve closure away from a valve seat to dispense fluid. Unfortunately, the valve constructions are configured such that fluid to be dispensed will rest within the dispensing chamber of the valve behind the valve seat after use and thereby outside of any refrigerated or insulated container in which the liquid is stored, thus increasing the risk of spoilage of the volume of fluid resting within the valve body after each use. Moreover, many fluid dispensing applications require vigorous sterilization procedures prior to use of the dispensing equipment, including irradiation at exposures of up to as high as 5.0 MRAD, and high temperature steam and chemical sterilization procedures. The thin-walled polyethylene construction of the valve bodies of the Waddington & Duval dispensing valves cannot withstand such sterilization procedures, and in fact become brittle and prone to failure when exposed to such procedures, thus greatly limiting their use for dispensing food products. Even further, the polyethylene valve closure of the Waddington & Duval dispensing valve construction is highly thermally conductive, such that heat transfer may easily occur between the exterior of the fluid container and the contents of the container simply through the valve structure, again raising the risk of spoilage of the contents.
Similarly, the Jefferson Smurfit Group provides a similar tap for use with disposable containers under the model designation VITOP. Once again, the Jefferson Smurfit Group tap construction is configured such that fluid to be dispensed will rest within the dispensing chamber of the valve behind the valve seat after use and thereby outside of any refrigerated or insulated container in which the liquid is stored, once again increasing the risk of spoilage of the volume of fluid resting within the valve body after each use. Likewise, the thin-walled polypropylene construction of the valve body of the Jefferson Smurfit Group dispensing valve cannot withstand the above-described sterilization procedures, and also becomes brittle and prone to failure when exposed to such procedures, thus greatly limiting their use for dispensing food products. And, as above, the polyester elastomer closure of the Jefferson Smurfit Group dispensing valve construction is highly thermally conductive, such that heat transfer may easily occur between the exterior of the fluid container and the contents of the container simply through the valve structure, again raising the risk of spoilage of the contents.
Thus, although substantial effort has been devoted in the art heretofore towards development of low-cost valves of this general type, there remains an unmet need for a valve which is easier to use and which does not require that the user exert such large forces to hold the valve open. This problem is complicated by the fact that the spring or other resilient member should provide the force necessary to assure leak-free seating of the valve seal when the plunger member is in the closed position. Likewise, there remains an unmet need for a disposable valve which is sufficiently robust so as to be able to withstand vigorous sterilization procedures, which reduces heat transfer through the valve between the interior and exterior of the fluid container, and which does not trap fluid outside of the intended storage vessel between dispensing cycles.
Moreover, for a dispensing valve provided as a component of a throw-away fluid container, it would be highly advantageous to provide an easy to use dispensing valve which offers the user assurance that the valve has not previously been used or tampered with, and that the integrity of the contents of the fluid container has not been compromised. Unfortunately, the need for such a feature has not been met by prior art dispensing valves.
There is further need for a valve which can be adapted, during manufacture, to provide the desired liquid flow rate for a particular set of conditions such as liquid viscosity and the liquid pressure or “head” available to force the liquid through the valve body. A valve which discharges a thick, high-viscosity fluid such as cold maple syrup or orange juice concentrate at a desirable rate will discharge a low-viscosity fluid such as water or wine under the same pressur

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dispensing valve for fluids does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dispensing valve for fluids, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dispensing valve for fluids will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2953997

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.