Fluent material handling – with receiver or receiver coacting mea – Evacuation apparatus
Reexamination Certificate
2000-04-18
2001-07-10
Douglas, Steven O. (Department: 3751)
Fluent material handling, with receiver or receiver coacting mea
Evacuation apparatus
C141S385000, C141S059000, C141S067000, C141S021000, C062S292000, C251S149900
Reexamination Certificate
active
06257285
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to fluid dispensing tool assemblies for evacuating and charging a fluid into a fluid system and of the general type disclosed in U.S. Reissue Pat. No. RE34,715 and in U.S. Pat. Nos. 4,889,149 and 5,560,407 which issued to the assignee of the present invention. As disclosed in the '149 and '407 patents, such tool assemblies are commonly used to fill automotive-type or motor vehicle cooling systems by first evacuating the cooling system and then charging or filling the system with a predetermined volume of fluid or coolant. Since all of the air in the system is removed during the evacuation cycle, the cooling system is filled completely without residual air pockets. Preferably, the tool assembly also provides for partially filling an overflow bottle or container which is usually connected by a flexible line or hose to the fill neck of the cooling system radiator. Since the overflow bottle is not filled completely, it is not necessary to evacuate the bottle prior to filling the bottle, but preferably, the overflow bottle receives coolant or cooling fluid simultaneously while the cooling system is being evacuated and filled in order to reduce the time of the full cycle.
With any such dispensing tool assembly for evacuating and filling a cooling system, it is desirable for the tool assembly to be compact and lightweight, to be easily attached to a cooling system, and to be simple to remove and replace for servicing. It is also desirable for the tool assembly to have control valves and passages which do not restrict the flow of fluid through the tool assembly so that a high fill rate may be obtained. In addition, the tool assembly should be easily adapted for use with radiator fill necks of different sizes and to provide for partially filling an overflow container or bottle simultaneously while the cooling system is being evacuated and filled with a fluid or liquid coolant. While the charging or dispensing tool assemblies disclosed in the above mentioned patents provide some of these desirable features, none of the tool assemblies provide all of the features.
SUMMARY OF THE INVENTION
The present invention is directed to an improved dispensing tool assembly which provides all of the desirable features mentioned above and which is ideally suited for evacuating and filling the cooling systems for motor vehicles while on an assembly line for the vehicles. More specifically, the tool assembly of the invention is compact and light weight and may be quickly coupled and sealed to the fill neck of a cooling system without requiring rotational orientation. The tool assembly of the invention also provides for a substantial increase in the flow rate of fluid through the tool assembly over prior tool assemblies so that the time for completely filling a cooling system is minimized. In addition, the tool assembly of the invention may be easily and quickly removed from connected lines and hoses for servicing or replacement, and is effective to evacuate and fill the cooling system while cooling fluid is also supplied through the tool assembly to an overflow container or bottle.
In accordance with a preferred embodiment of the invention, a dispensing tool assembly includes a three section aluminum body with an upper head section defining a fluid supply port and an evacuation port each having a valve seat and connected by a laterally extending or cross chamber or passage. An intermediate body section has a center passage extending axially downwardly from the cross chamber and supports a set of poppet valves for movement on the parallel axes of the valve seats. Each of the valve members is air actuated by a double acting piston, and the valve members are constructed so that the evacuation valve member moves upwardly through the cross passage to engage its valve seat or closes before the coolant valve member moves downwardly through the cross passage to its open position.
The lower or base section of the tool body supports an axially movable tubular discharge spout forming an extension of the center passage, an annular sleeve or shuttle is slidably mounted on the discharge spout. The shuttle and spout support a set of resilient ring seals which are simultaneously compressed axially by an air actuated piston mounted on the upper end of the discharge spout and supported within the base section. The axial compression produces radial expansion of the ring seals against an upper and lower cylindrical portions of a radiator fill neck. The annular shuttle has axially extending passages which receive cooling fluid through passages within the tool body and terminate between the ring seals for simultaneously filling an overflow bottle while the cooling system is being evacuated and filled. The tool body also supports a pair of diametrically opposite lever-type locking fingers or arms which are air actuated by corresponding pistons within the head portion of the tool body.
REFERENCES:
patent: Re. 34715 (1994-09-01), Gudenau et al.
patent: 4889149 (1989-12-01), Weaver et al.
patent: 5560407 (1996-10-01), Swinford
patent: 6029720 (2000-02-01), Swinford
Robinson Randy S.
Stemen Randy S.
Douglas Steven O.
Jacox Meckstroth & Jenkins
Production Control Units, Inc.
LandOfFree
Dispensing tool assembly for evacuating and charging a fluid... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Dispensing tool assembly for evacuating and charging a fluid..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dispensing tool assembly for evacuating and charging a fluid... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2493159