Chemistry: analytical and immunological testing – Including sample preparation – Volumetric liquid transfer
Reexamination Certificate
2001-09-13
2003-06-17
Ludlow, Jan (Department: 1743)
Chemistry: analytical and immunological testing
Including sample preparation
Volumetric liquid transfer
C073S864110, C422S066000, C422S105000, C436S044000, C436S054000
Reexamination Certificate
active
06579724
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention pertains to methods and dispensing apparatuses providing precise, very small quantities of fluids.
2. Description of the Prior Art
It is important in a variety of industries, such as medical diagnostics, biotechnology, and scientific instrumentation, to accurately dispense very small drops of fluids. Furthermore, it is desirable to be able to program the volume of the drops so that the amount delivered will be precise and accurate while at the same time minimizing the amount of a sample required for the dispenser. Some examples of small volume dispensing devices are described in U.S. Pat. Nos. 5,366,896; 5,919,706; 5,927,547; 5,958,342; 5,998,218; 6,083,762; 6,090,348; and 6,100,094. Ink jet printer devices represent an example of a technology area where systems and methods for dispensing small volumes of fluid have been developed. However, the ink jet printer devices suffer from the drawback that they often require several microliters of fluid to prime the dispenser passage; even if only sub-nanoliter sized droplets are dispensed. In many technologies, it would be advantageous to be able to aspirate a volume of about a nanoliter or less without needing to pick up larger amounts. This problem is especially acute in forensic sciences and in biotechnology where only limited quantities of sample are available.
One difficulty with dispensing small volumes of fluid is the necessity of a tip with a small radius. The small radius results in large internal pressures that prevent the fluid from flowing easily from the tip. To overcome this limitation, other systems expel fluids by forcibly ejecting the droplets at a high velocity. However, these systems suffer from accuracy problems. It would be desirable for a system to be able to aspirate and deliver small volumes without being susceptible to clogging, while still maintaining a high level of accuracy.
SUMMARY OF THE INVENTION
It is an object of this invention to overcome the limitations of the prior art, and to provide a highly accurate dispensing device and method which allows dispensing controllable droplets of sub nanoliter size without requiring relatively large priming volumes.
This invention contemplates the use of a pipette or probe that includes a working fluid, an air gap, and a sample fluid in the dispensing tip.
The pipette or probe is used to first retrieve a quantity of the sample fluid at the tip. In the retrieval, the working fluid and air gap rise within the pipette or probe, and the sample fluid fills the end of the tip. Then, the invention contemplates dispensing a sessile drop onto a substrate. A small portion of the sample remains in the end of the tip, and the tip contacts the outer periphery of the sessile drop. A camera or other imaging device is used to measure the diameter and height of the fluid. This information is then used to calculate the volume inside the tip while it is still in contact with the sessile drop. Then, precise amounts of fluid in selectively variable quantities are drawn back up into the pipette tip from the sessile drop. The tip is then moved to a desired dispensing location, and the desired sample fluid is expelled from that remaining in the tip.
Physically, movement of fluid into a very narrow channel pipette or probe tip is difficult to achieve. The technique utilized in this invention promotes the ability to siphon up sample fluid by different mechanisms. First, creating a sessile drop physically provides a fluid with a surface of curvature that will promote siphoning. Laplace's rule states that the pressure across an interface is proportional to interfacial (surface) tension and inversely proportional to radius of curvature. The small radii inside pipette tips, therefore, leads to large pressures. Second, the liquid surface does not move smoothly over the pipette inside surface because the surface is not energetically constant (i.e., even) and because of what is known as contact angle hysteresis (advancing angles are not equivalent to receding angles). For these reasons, fluid motion is not steady; rather it is stop and start, and may often be referred to as stick/slip. Combined with the high and variable pressures from LaPlace's rule, it is extremely difficult to directly draw or dispense a specific amount from a continuum of liquid. This invention contemplates providing vibrations to the pipette or probe tip. This can be achieved by acoustic or mechanical means (e.g., a piezo ceramic element may be driven to sequentially compress and de-compress the working fluid). The larger radius of the sessile drop used in this invention lowers the pressures, and the high frequency vibrations contemplated by this invention breaks loose the stick/slip motion.
The method and apparatus of this invention are adaptable to robotic placement of very small fluid samples at precise locations. This may have application in certain antibody and DNA detection chips, as well as in a variety of other applications. For example, by having precise quantities of fluid containing an antigen or antibody or single stranded DNA or any other molecular entity placed on a chip or other substrate, it would be possible to optically assess weight differentials which are the result of selective bonding or hybridizing reactions.
REFERENCES:
patent: 5312757 (1994-05-01), Matsuyama et al.
patent: 5555767 (1996-09-01), Makino et al.
patent: 5811306 (1998-09-01), Komatsu
patent: 5856200 (1999-01-01), Krause et al.
patent: 6083762 (2000-07-01), Papen et al.
patent: 6405609 (2002-06-01), Richards et al.
patent: 6484556 (2002-11-01), Jabobs et al.
First Ten Angstroms
Ludlow Jan
Whitham Curtis & Christofferson, PC
LandOfFree
Dispensing method and apparatus for dispensing very small... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Dispensing method and apparatus for dispensing very small..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dispensing method and apparatus for dispensing very small... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3136925