Dispenser for the dispensing elements in strips

Article dispensing – With recorder – register – indicator – signal or exhibitor – Dispenser part position or adjustment indicator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C221S006000, C221S155000, C221S232000, C221S255000, C221S249000, C221S272000, C221S274000, C271S128000

Reexamination Certificate

active

06508380

ABSTRACT:

A FIELD AND BACKGROUND OF THE INVENTION
The invention relates to a dispenser for dispensing strip elements, having a supply chamber for accommodating a strip-element stack, and having a discharging pusher with a nose for interacting with a first strip element of the strip-element stack, via a discharging slot which is adapted to the thickness of a strip element.
A dispenser of this type is known from DE-A 42 05 805. The discharging-pusher nose, which draws the first strip element of the strip-element stack into a free-standing position in which it is accessible for gripping, is configured as a tilting catch. The geometry of the latter is intended to result in a situation where the nose, when the discharging pusher is pushed inward, lifts off from the strip element and, when the discharging pusher is drawn outward, moves into a position in which the nose engages beneath the inner end surface of the strip element and carries it along. Such a discharging apparatus requires a large amount of precision well beyond the normal level. On account of prevailing tolerance pairings, ineffective displacements may occur, and these result in the user of the strip elements not being certain of the actual supply. Opening in order to make a check may result in effectiveness-reducing contact with sensitive locations of the dispensing materials.
SUMMARY OF THE INVENTION
The object of the invention is to form a dispenser of the generic type in a more functionally advantageous manner by straightforward means.
This object is achieved wherein the discharging pusher has a pusher nose which is made of elastically compliant material and, in the uninfluenced state, projects by more than the thickness of the strip element.
Such a configuration achieves a dispenser of increased use value, this is based, in particular, in the functionally reliable operation. Unproductive strokes are ruled out in practice. The carry-along part of the pusher nose acts reliably at the inner end of the strip element. It cannot slip off because the pusher nos poets by more than the thickness of the strip element. The excess pusher-nose length, which ensures transportation, simply folds over in the manner of a tongue or lip and slides over the second strip element, although the latter, as a result of not being congruent with the discharging slot, is held back. The elastically compliant, preferably rubber-like material is made to have good flexibility. It is possible to use natural rubber, synthetic rubber or even silicone. Even flexible foam material is conceivable, with or without a skin. The as it were “broom-like” gripping action of the pusher nose tolerates dimensional deviations of the strip elements, in particular, also their roughness as a result of electrically conductive crosspieces, which usually protrude slightly. All of these roughnesses, in addition that of a testing window, are easily overcome. In this respect, accordingly, it is beneficial that, in an initial dispensing position, the pusher nose projects such that it engages beneath the strip element which is ready for dispensing. It is also proposed that the pusher nose be shaped such that it projects in the form of a wedge in the direction of the strip element. This achieves a sensitive, in particular highly elastic tip which slides over the next-following strip element with a low level of contact-pressure force. As the distance from the tip increases, the nose becomes more shear-resistant. When the discharging pusher is pushed inward again, the wedge-shape causes the nose tip to return with an extremely low level of contact pressure.
In a dispenser in which, furthermore, the discharging pusher is coupled to a swing-action lid for pushing the discharging pusher inward and drawing it outward, it proves to be favorable in terms of actuation for the coupling between the discharging pusher and swing-action lid to be operationally releasable. On the one hand, this allows the favorable spatial proximity between the strip element and the discharging pusher but, on the other hand, by releasing the swing-action lid from the discharging pusher, it achieves the sought-after free-standing position which is accessible for gripping. Conversely, this automatic dispensing means can even be used for pushing the strip-element vehicle, that is to say the discharging pusher, inward. If a dispenser in which the swing-action lid forms a downwardly projecting coupling part also has the structural measure of the discharging slot being formed between the coupling part and a hinge joint of the swing-action lid, then, until the strip element is actually removed, the dispenser provides an advantageous protective space for the same. In specific terms, the details of the coupling part are such that, at its free end, the coupling part forms a latching head which engages in an elongate hole of the discharging pusher, with a longitudinal axis of the elongate hole extending in the direction of the hinge joint. In relation to the elongate hole, which forms the mating latching location, the latching head acts like a snap fastener. The elongate-hole formation takes account of the movement requirements of the coupling part. This is because there is a pivoting movement toward the head of the discharging pusher. Good adaptation to different thicknesses of a range of strip elements can be achieved in that the discharging slot is formed by interaction of an end surface of a separately latchable bar part with a housing-mounted boundary part. All that is thus required, is to insert a longer or shorter slot-dimension determining bar part. As far as the latching is concerned, it is also generally sufficient to have a sufficiently friction-fitting plug-in connection. In respect of the stack position appropriate for removal, an advantageous measure resides in the strip-element stack being loaded by a spring pusher in the direction of the strip elements dispensing position. The contact-pressure force of the spring of the spring-pusher is greater than the restoring force inherent in the material of the pusher nose. Also functionally advantageous is the measure where a viewing opening is formed in the housing of the dispenser and, if appropriate, with the swing-action lid open, allows a visual check of the spring-pusher position. As a result, the user can quickly carry out a contents check without dismantling any of the dispenser, i.e. at least without having to open the dispenser. It is also favorable here for the viewing opening to be formed in the bar part. Such verification features are thus provided on a small component rather than on the housing. Furthermore, the visual-checking means are also embodied in that a visual marker is integrally formed on the spring pusher, said marker, as the supply of strip elements decreases, being displaced into the field of view of the viewing opening. A scale or some other marking may be provided laterally on the stationary part. Furthermore, another configuration of even independent importance resides in the supply chamber being combined with the spring pusher, the discharging pusher, the discharging slot assigned to the supply chamber, and if appropriate a chamber provided with a hygroscopic material, to form a magazine which can be inserted from beneath into the housing of the dispenser, on which the swing-action lid is integrally formed. This also has the advantage of avoiding incorrect assembly insofar as some parts of the dispensing mechanism are accommodated in the supplied part, the magazine, and other parts are accommodated in the housing of the dispenser. It is also possible for the closure lid of the dispenser shaft, for example a plug-in lid, to have already been integrally formed on the magazine, which forms a so-called refill system.
If, according to a first exemplary embodiment, the strip elements which are to be separated are advanced longitudinally with sliding action over the stack-side strip element so as to be ready for removal or gripping, then the dispenser according to a second exemplary embodiment provides an advancing action such that, for dispensi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dispenser for the dispensing elements in strips does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dispenser for the dispensing elements in strips, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dispenser for the dispensing elements in strips will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3056952

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.