Dispensing – Automatic control – By the weight of the material in the supply container
Reexamination Certificate
1998-10-14
2001-10-23
Jacyna, J. Casimer (Department: 3751)
Dispensing
Automatic control
By the weight of the material in the supply container
C222S001000, C222S056000, C222S077000, C222S414000, C141S001000, C141S083000, C141S129000, C099S407000
Reexamination Certificate
active
06305573
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to dispensing; more particularly to dispensing food items; and more particularly still to an intelligent, efficient dispensing unit for dispensing frozen food items.
BACKGROUND OF THE INVENTION
Frozen french fry dispensers are known in the art. An example is disclosed in U.S. Pat. No. 5,282,498 issued to Cahlander et al; U.S. Pat. No. 5,353,847 issued to Cahlander et al; and U.S. Pat. No. 5,191,918 issued to Cahlander et al. Each of the foregoing patents discloses a french fry dispenser which includes a main storage bin, a device for moving the fries from the main storage bin into a secondary location, a means for holding the fries in the secondary location, and a complex apparatus for moving empty cooking baskets into position under the secondary storage location.
While the disclosed dispenser automates the process of dispensing frozen articles and has been successful in the marketplace, there are several areas in which the dispenser may be improved. First, the complex apparatus used for automatically moving the plurality of baskets into position under the secondary position is often not needed and/or desired by the end-user. Further, in such instances, providing such a device introduces unnecessarily complex and expensive equipment into the dispenser.
Second, the manner in which the disclosed apparatus determines the weight of the articles to dispense does not provide highly accurate results (e.g., dispensing by time and by volume may be non-linear based in part upon the articles dispensed). To solve the problem, a load cell is often used to accurately measure the weight of the articles. However, such a load cell is usually an expensive piece of equipment which adds more expense into the dispenser apparatus. Accordingly, there is a need for an inexpensive and accurate load/weight measuring device.
Third, the device for moving the fries from the main storage bin into the secondary location may be clogged by large clumps of fries thus causing breakage of the fries. Further, in some instances, articles which have different characteristics from fries are desired to be dispensed. Accordingly, a controllable device is needed to resolve this problem.
Fourth, the manner in which the disclosed apparatus dispenses does not have an efficient dispensing rate for various types of food products or articles. More specifically, the dispensing rate is either too fast which causes difficulty in stopping at an accurate weight or too slow which extends to an unreasonable time. The fundamental problem is that a dense product or product with a large weight per particle, if dispensed rapidly, cannot be stopped at an accurate weight, for example, due to the weight of product in flight, i.e. the weight of the product which has not reached the weighing mechanism but has been dispensed. Thus, there is a need to dispense the product at an appropriate rate, e.g. at a rate which reacts to the approaching target weight. Another associated problem is that if the load/weight sensing/measuring assembly operates at a rate appropriate to a denser product, a weighing cycle may be extended to an unreasonable time, e.g. four to six times the cycle for a heavier product. Thus, there is a need for a controllable weighing mechanism to provide an appropriate dispensing rate based on the weight of articles dispensed. Such an improved dispenser apparatus should also provide for accurate weighing by taking into account differences in each different dispenser unit and characteristics of the articles dispensed, i.e. the weighing mechanism should learn over time, e.g. several dispensing cycles, to account for such discrepancies.
Fifth, it is often desired to limit the defrosting/thawing of the frozen articles. In many cases, however, the frozen articles to be dispensed from the disclosed apparatus are easily defrosted or thawed, especially when the dispenser is the near cooking area. Accordingly, there is a need for an air restricting mechanism implemented in the apparatus to help slow the defrosting/thawing of the frozen articles.
Sixth, the disclosed apparatus is adapted for dispensing frozen fries. The disclosed apparatus is not configured and arranged to dispense other articles, such as onion rings, drummies, or even different sized frozen fries, etc. Therefore, there is a need for an improved dispenser apparatus which is configured and arranged to dispense a variety of food products or articles.
SUMMARY OF THE INVENTION
The present invention provides for a reliable method and apparatus for dispensing articles and controlling the dispensing mechanism to more accurately dispense the desired articles. Such control may also be expanded to learn over time to modify the control to achieve even greater accuracy.
In a preferred embodiment constructed according to the principles of the present invention, the apparatus for dispensing food articles from a primary storage holding area to a basket includes: a primary food article storage location and an accumulator food article storage location arranged and configured proximate to the primary food article storage location. The food articles fall by gravity to a basket which is generally located beneath the accumulator food article storage location. A rotatable, reversible drum controllably transfers the food articles from the primary to the accumulator food article storage location in response to a control signal. An accumulator door controllably dispenses the food articles from the accumulator food article storage location to the basket in response to a control signal. The control signals are generated by a controller.
In one aspect of the invention, the drum motor is reversed in its rotation direction upon detection of a predetermined current increase and/or a predetermined speed decrease of the drum motor. After a predetermined period of time or turn, the drum motor is rotated forward again in its normal dispensing direction. One advantage of this aspect of the present invention is that it significantly reduces food breakage and can be adapted for various types of food articles (e.g., in one example, frangible frozen food items).
In another aspect of the invention, the articles in the accumulator food article storage location are retained in that area by the accumulator door. The accumulator door is selectively operated between open and closed positions. A load/weight measurement device is arranged and configured to weigh the articles retained by the accumulator door in real time. In a preferred embodiment, a spring is used to convert the load/weight to displacement. By sensing the displacement with a sensor and sending the sensed weight signal to the controller, the controller calculates the load/weight of the articles in the accumulator food article storage location. When a desired or predetermined weight is reached, the controller signals the drum motor to reduce the dispensing rate and stop. The accumulator door may be selectively opened automatically upon reaching the desired weight and detecting the presence of the basket or may be operated by a user when desired.
A further aspect of the present invention is that an adaptive weighing method is utilized in the controller during the weighing/measuring process of the articles in the accumulator storage location. One advantage of using the adaptive weighing method is that it optimizes the dispensing rate by adjusting its dispensing rate to match a predetermined rate. The controller monitors in real time the sensed weight signal from the load sensor and operates the drum motor to control the articles dispensed into the accumulator area to a predetermined level. Thus, by monitoring the movement of the drum and the weight of the transferred articles, the controller can determine the manner in which the drum should be moved in a future dispensing cycle so as to increase the accuracy of the dispensed articles. Accordingly, the adaptive weighing method not only resolves the problem mentioned before but also allows an accurate, intelligent, efficient dispensing process.
An add
Fritze Karl Jon
Hammer Donald James
Harrison Scott Mitchell
Koerner Bruce Hamilton
Kuhlemeier Kirby Juhl
Jacyna J. Casimer
Merchant & Gould P.C.
RAM Center, Inc.
LandOfFree
Dispenser for frangible frozen food articles does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Dispenser for frangible frozen food articles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dispenser for frangible frozen food articles will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2588605