Dislocation density reduction in gallium arsenide on silicon het

Fishing – trapping – and vermin destroying

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

437126, 437976, 148DIG160, H01L 2120

Patent

active

052081826

ABSTRACT:
A method of forming gallium arsenide on silicon heterostructure including the use of strained layer superlattices in combination with rapid thermal annealing to achieve a reduced threading dislocation density in the epilayers. Strain energy within the superlattices causes threading dislocations to bend, preventing propagation through the superlattices to the epilayer. Rapid thermal annealing causes extensive realignment and annihilation of dislocations of opposite Burgers vectors and a further reduction of threading dislocations in the epilayer.

REFERENCES:
patent: 4088515 (1978-05-01), Blakeslee et al.
patent: 4561916 (1985-12-01), Akiyama et al.
patent: 4963508 (1990-10-01), Umeno et al.
N. A. El-Masry, et al., "Combined effect of strained-layer supperlattice and annealing in defects reduction in GaAs grown on Si substrates", Applied Physics Letters 55 (14), 2 Oct. 1989, pp. 1442-1444.
C. Choi et al., Effect of in situ and ex situ annealing on dislocations in GaAs on Si Substrates, Appl. Phys. Lett. 50(15), 13 Apr. 1987, (pp. 992-994).
S. J. Pearton et al., Characterizations of GaAs Layers Grown Directly on Si Substrates by Metallorganic Chemical Vapor Deposition, J. Appl. Phys. 62(3), 1 Aug. 1987, (pp. 862-867).
J. W. Matthews et al., Defects in Epitaxial Multilayers, Journal of Crystal Growth, 27 (1974), pp. 118-125.
J. W. Matthews et al., Defects in Epitaxial Multilayers, Journal of Crystal Growth, 29(1975) pp. 273-280.
J. W. Matthews et al., Defects in Epitaxial Multilayers, Journal of Crystal Growth, 32(1976) pp. 265-273.
S. M. Bedair et al., Defect Reduction in GaAs Grown by Molecular Beam Epitaxy Using Different Superlattice Structures, Appl. Phys. Lett. 49(15), Oct. 13, 1986, pp. 942-944.
R. Fischer et al., Material Properties of High-Quality GaAs Epitaxial Layers Grown on Si Substrates, J. Appl. Phys. 60(5), Sep. 1, 1986, pp. 1640-1647.
El-Masry et al., Interactions of Dislocations in GaAs Grown on Si Substrates with InGaAsGaAsP Strained Layered Superlattices, J. Appl. Phys. 64(7), 1 Oct. 1988, 3672-3677.
Yamaguchi et al., Analysis of Strained-Layer Superlattice Effects on Dislocation Density Reduction in GaAs on Si Substrates, Appl. Phys. Lett., 54(1), Jan. 2, 1989.
Chu et al., Lattice-Mismatch-Generated Dislocation Structures and their Confinement Using Superlattices in Heteroepitaxial GaAs/InP and InP/GaAs Grown by Chemical Beam Epitaxy, J. Appl. Phys. 66(2), 15 Jul. 1989, pp. 520-530.
J. Narayan et al., Effect of Thermal Annealing in Boron Implanted, Laser Annealed Silicon, American Institute of Physics, 1979, pp. 440-445.
Lee et al., Epitaxy of GaAs on Si: MBE and OMCVD, Mat. Res. Soc. Symp. Proc., vol. 91, 1987, pp. 33-44.
Sharan et al., Strain Relief Mechanisms and the Nature of Dislocations in GaAs/Si Heterostructures, J. Appl. Phys. 66(6), 15 Sep. 1989, pp. 2376-2380.
Chang et al., Characteristics of Dislocations at Strained Heteroepitaxial InGaAs/GaAs Interfaces, J. Appl. Phys. 66(7), 1 Oct. 1989, pp. 2993-2998.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dislocation density reduction in gallium arsenide on silicon het does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dislocation density reduction in gallium arsenide on silicon het, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dislocation density reduction in gallium arsenide on silicon het will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1975000

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.