Disk drive enclosure

Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C361S801000, C248S634000, C248S635000, C360S098010

Reexamination Certificate

active

06301105

ABSTRACT:

BACKGROUND
A disk drive for a computer commonly is placed in an enclosure in order to, for example, protect or cool the disk drive. An enclosure commonly includes one or more external electrical connectors that are connected inside the enclosure by a cable to the disk drive. An enclosure may be constructed to be placed in rack equipment or may be constructed to be placed on a desktop.
Advances in disk drive technology that provide greater storage density and access speeds also are accompanied by problems caused by higher power consumption and revolutions per minute of the disk drive. These problems include increased heat and increased noise. Techniques for reducing noise tend to be thermally insulating and thus increase heat around a disk drive. Techniques for reducing heat by convection, such as rotating fans, tend to create noise. The use of conduction to dissipate heat, such as by a heat sink, often is ineffective to adequately cool the disk drive, because integrated circuits in a disk drive generally do not have a heat conduction path from within the disk drive to a heat sink.
Other reliability problems are associated with the cable that connects the disk drive to the external connector of the enclosure. For example, the impedance of a cable is affected by its proximity to both devices within the enclosure and the enclosure itself. Because a cable may be placed in many locations within an enclosure, the impedance of the cable can vary significantly from enclosure to enclosure. Single-ended small computer systems interface (SCSI) signals and low voltage differential (LVD) signals are particularly sensitive to such variations in impedance. The cable also can become loose after manufacturing, or can be installed incorrectly.
Another reliability problem arises when data is striped, i.e., a data word is divided and written in parallel, to a set of disk drives. Such a set of disk drives is called a stripe set. After data is stored on a stripe set, the order of the disks in the stripe set must be maintained in order to maintain data integrity. The exact physical arrangement of the disk drive enclosures for the stripe set, for example in a stack, ideally would be maintained in order to ensure data integrity. Some users actually resort to using adhesive tape or other physical measures to bind the set of disk drive enclosures together.
These problems are particularly undesirable in computing environments where high reliability and low noise are expected, such as in professional multimedia authoring studios. Computer systems in such environments typically use a large amount of disk capacity, particularly if the disks are used for storing audio and video information. The large number of disks both creates a significant amount of noise and increases concern for reliability.
SUMMARY
Noise is reduced in a disk drive enclosure by using vibration damping materials on the inside surface of the enclosure. These materials and their placement on the inside surface of the enclosure reduce noise without thermally insulating the disk drive. A temperature controlled fan may be used to remove heat by convection while generating a minimum amount of noise.
The connection between the disk drive and the external connector of the disk drive enclosure is made more reliable by using a printed circuit board instead of a cable. Because a printed circuit board has a fixed location and fixed layout, variability among disk drive enclosures can be minimized. Also, errors in manufacturing of the disk drive enclosure can be reduced.
To facilitate the use of the disk drive in a stripe set, the disk drive enclosure has a set of mechanical interlocks that permit the enclosures to be stacked vertically. In one embodiment, the mechanical interlocks are constructed in a manner that permits stacking in unlocked and locked configurations. The locked configuration may be made permanent using an additional locking mechanism. These mechanical interlocks also may be used to support the enclosure on a desktop. The mechanical interlocks also may be constructed to slide on a rail, permitting the enclosure to be used in a rack mount. A rack mount configuration also may be provided with a quick-release mechanism that interacts with the mechanical interlocks to hold the disk drive enclosure in the rack mount.
Accordingly, in one aspect, a disk drive enclosure has a housing for enclosing a disk drive. A vibration dampening material is applied to the inside surface of the housing. A temperature sensor is mounted inside the housing adjacent to the disk drive. The temperature sensor has an output to provide an electrical signal indicative of ambient temperature in the housing. A control circuit has an input connected to the output of the temperature sensor and an output to provide a control signal as a function of the temperature sensor. A fan has an input connected to the control signal and is responsive to the control signal to rotate at a speed corresponding to the control signal. In one embodiment, the control signal varies according to the temperature in the housing within a range of temperatures, whereby the speed of the fan is variable according to the control signal. In another embodiment, a threshold circuit has an input connected to the output of the temperature sensor and an output to provide an alarm signal indicating one of a plurality of ranges in which the temperature is sensed. An indicator has an input connected to the output of the threshold circuit and is responsive thereto to provide a visual indication of the range in which the temperature is sensed.
In another aspect, the disk drive enclosure has a housing for enclosing a disk drive. A first plurality of mechanical interlocks is mounted on a first side of the housing. A second plurality of mechanical interlocks is mounted on a second side of the housing opposite the first side of the housing. Each of the first and second plurality of mechanical interlocks has a top portion having a surface complementary to a surface of a bottom portion of the mechanical interlock, such that the top portion of a first mechanical interlock and the bottom portion of a second mechanical interlock are slidably connectable in a first direction. When connected, the mechanical interlocks prohibit movement of the mechanical interlocks with respect to each other in second and third directions orthogonal to the first direction. In one embodiment, the top portion has top face and the bottom portion has a bottom face such that the top face of the top portion of a first mechanical interlock supports the bottom face of the bottom portion of a second mechanical interlock when enclosures on which the first and second mechanical interlocks are attached are vertically aligned and stacked. In another embodiment, each of the first and second plurality of mechanical interlocks has portion having a surface complementary to a surface of a support in a rack, such that the portion of the mechanical interlock and the support in the rack are slidably connectable in a first direction and when connected prohibit movement of the mechanical interlock with respect to support in second and third directions orthogonal to the first direction. In still another embodiment, a locking mechanism has a first movable member and is mounted on the first side of the housing. In another aspect, a disk drive enclosure, for mounting in a rack having a support, has a housing for enclosing a disk drive. A first plurality of mechanical interlocks is mounted on a first side of the housing. A second plurality of mechanical interlocks is mounted on a second side of the housing opposite the first side of the housing. Each of the first and second plurality of mechanical interlocks has portion having a surface complementary to a surface of the support in the rack, such that the portion of the mechanical interlock and the support in the rack are slidably connectable in a first direction and when connected prohibit movement of the mechanical interlock with respect to support in second and third directions orthogonal to the first directio

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Disk drive enclosure does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Disk drive enclosure, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Disk drive enclosure will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2579740

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.