Discrete circuit component and process of fabrication

Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C361S764000, C361S790000, C361S803000, C438S458000

Reexamination Certificate

active

06618269

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates in general to a discrete circuit component and the corresponding process of its manufacturing. In particular, the present invention relates to a discrete circuit component for electronic circuits and its process of manufacturing that is particularly suitable for automated mass production.
BACKGROUND OF THE INVENTION
Active and passive discrete circuit components such as diodes, transistors, resistors and capacitors are widely used for the construction of electronic circuits. Regardless of either signal or power, linear or digital applications, different types of discrete circuit components are essential for the construction of various electronic circuit systems. Along with their counterparts fabricated inside integrated circuit (IC) devices, diodes, resistors and capacitors in the form of discrete circuit components are produced and consumed in great quantities.
Due to the low unit prices and the large quantity used, fabrication of these discrete circuit components is particularly suitable for and, practically, requires automated mass production. Without automated mass production to achieve low price and fast production rates, these discrete products cannot be competitive commercially.
Circuit components of the discrete type are available in many different packages, among which the leaded package is one of the most common. With the constantly-pursued goal of miniaturization, discrete circuit components produced to the standard of SMT (Surface-Mount Technology) have become the indispensable components in modem electronics industry for the production of almost all sorts of electronic devices, regardless of whether or not they are of miniaturized designs. However, as is well known in the art, the manufacture of many of these discrete circuit components still relies on human labor to certain extent. For example, some discrete diodes are manufactured with high level of human labor in some of its production procedural steps.
On the other hand, some conventional automated production methods for certain discrete circuit components employ the robotic pick-and-place maneuvering that mimics human actions in one or more production procedural steps. Although equipments such as pick-and-place machines indeed reduce the level of human intervention in the manufacturing process of discrete circuit components, however, due to the fact that robotic pick-and-place is only capable of handling one element of the circuit component at a time, it frequently constitutes serious bottleneck in the flow of a manufacturing process.
SUMMARY OF THE INVENTION
It is therefore an object of the invention to provide a discrete circuit component and its process of manufacture so that the component is compatible to the EIA standard chip dimensions and suitable for SMD (Surface-Mount Devices) circuit designs.
In order to achieve the above-identified object, the present invention provides a discrete circuit component that comprises a circuit component die having a first electrode and a second electrode. A surface of a first substrate has an electrically-conductive trace electrically connected to the first electrode of the circuit component die, and a surface of a second substrate also has an electrically-conductive trace electrically connected to the second electrode of the circuit component die. A first terminal electrode is electrically connected to the conductive trace of the first substrate, surface of the first terminal electrode is generally orthogonal to the longitudinal axis of the conductive trace of the first substrate. A second terminal electrode is electrically connected to the conductive trace of the second substrate, and surface of the second terminal electrode is also generally orthogonal to the longitudinal axis of the conductive trace of the second substrate. The first and second substrates are parallel to each other and together enclose the circuit component die. The conductive trace of the first substrate leads away from the circuit component die in the direction opposite to the direction in which the conductive trace of the second substrate leads away from the circuit component die. The space between the first and second substrates not being occupied by the circuit component die is filled with a material which is preferably the same as the material for the first and second substrates. The filled material encloses the circuit component die completely.
The present invention further provides a process for fabricating discrete circuit components comprising the steps of: (a) forming a matrix of a number of first electrically conductive traces on a first substrate; (b) placing a circuit component die on each of the first conductive traces, with a first electrode of the circuit component die electrically connected to the corresponding first conductive trace; (c) covering each of the circuit component dies with a second substrate, a surface of the second substrate having a matrix of a number of second electrically conductive traces each electrically connected to the second electrode of the corresponding one of the circuit component dies; (d) filling the spaces between the first and second substrates un-occupied by the circuit component dies with the same material as that for the first and second substrates, the filled material completely surrounding the dies and thereby forming an enclosed matrix of circuit component dies; (e) separating the enclosed matrix of circuit component dies into one-dimensional component arrays of a number of discrete circuit components; (f) covering each of the edges of the separated component arrays revealed after the separation with a layer of terminal electrode, one of two terminal electrodes for each of the component arrays being electrically connected to the first conductive traces and the other to the second conductive traces; and (g) cutting each of the component arrays into a number of individual discrete circuit components.


REFERENCES:
patent: 6021050 (2000-02-01), Ehman et al.
patent: 6055151 (2000-04-01), Tormey et al.
patent: 6373714 (2002-04-01), Kudoh et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Discrete circuit component and process of fabrication does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Discrete circuit component and process of fabrication, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Discrete circuit component and process of fabrication will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3072075

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.