Discharge lamp with dielectrically impeded electrodes

Electric lamp and discharge devices – With luminescent solid or liquid material – With gaseous discharge medium

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C313S494000, C313S635000, C501S077000

Reexamination Certificate

active

06469435

ABSTRACT:

TECHNICAL FIELD
The invention relates to a discharge lamp according to the precharacterizing clause of claim
1
.
The term “discharge lamp” here covers sources of electromagnetic radiation based on gas discharges. The spectrum of the radiation can in this case cover both the visible range and the UV (ultraviolet)/VUV (vacuum ultraviolet) range, as well as the IR (infrared) range. Furthermore, a phosphor layer may also be provided for converting invisible radiation into visible radiation.
The case in point deals with discharge lamps having so-called dielectrically impededed electrodes. The dielectrically impeded electrodes are typically produced in the form of thin metal strips, at least a part of which is arranged on the inner wall of the discharge vessel. At least a part of these inner-wall electrodes is fully concealed from the interior of the discharge vessel by a dielectric barrier layer.
If only electrodes of a single polarity—preferably the anodes—are covered with a dielectric barrier layer, then in preferable unipolar operation a so-called unilaterally dielectrically impeded discharge is formed. However, if all the electrodes, i.e. both polarities, are covered with a dielectric barrier layer, then both in unipolar and bipolar operation a bilaterally dielectrically impeded discharge is formed.
On the dielectric barrier layer, and in general on all other parts of the inner wall of the discharge vessel as well, at least one other functional layer is applied, e.g. a layer of a phosphor or phosphor blend and/or one or more layers which reflect visible radiation (light) and/or UV radiation. The purpose of the reflective layer is to send out visible light in a controlled way, i.e. only in a particular preferred direction of the lamp.
There are no particular restrictions on the geometrical shape of the discharge vessel. For example, tubular or flat discharge vessels are commonplace, the latter being amongst other things suitable as so-called flat lamps for the back-lighting of liquid crystal displays (LCDs).
PRIOR ART
The starting materials for both the reflective and the phosphor layer or layers are initially in the form of powders with a suitable grain size. These powders are then applied as a suspension, usually mixed with an organic binder, with a defined layer thickness to the inner wall of the lamp or to the previously applied other functional layers, e.g. electrodes and dielectric barrier layer. The thickness of the reflective or phosphor layer is, controlled through the viscosity of the suspension, adapted to the respective coating process. After drying and heating, the reflective and/or phosphor layers are in the form of porous powder layer or layers.
Besides the phosphor layer thickness, the uniformity of the reflective and/or phosphor layer as well as its mechanical bonding strength, which decreases as the layer thickness increases, are also important conditions for obtaining optimum conversion of UV light to visible light.
The dielectric barrier layer usually consists of glass frits, preferably lead borosilicate glass (Pb—B—Si—O).
In the case of flat lamps, whose discharge vessels respectively consist of an essentially plane base glass, a similar front glass and, optionally, a frame, the base glass is provided with a so-called solder edge which likewise consists of a glass frit, preferably PbB—Si—O. The purpose of this solder edge is to bond the components of the discharge vessel (base glass, frame, front glass) in vacuum-tight fashion during the assembly process. This assembly process involves carrying out a thermal treatment in which the solder edge “melts” to a defined degree, i.e. reaches a defined viscosity.
The reflective and/or phosphor layers are usually applied before this assembly process. Because of this, in addition to the solder edge, the dielectric barrier layer also returns to lower viscosity at the assembly temperature. The overlying porous reflective and/or phosphor layers are hence in turn torn by the “movement” in the dielectric barrier layer (“ice-floe formation”). The reason for this is that the porous layers have no cohesion and hence cannot join in with this movement without damage, but instead tear and/or even sink partly into the dielectric barrier layer. The uniformity of the reflective and phosphor layer is hence compromised, which causes light losses. Furthermore, these “ice floes” are clearly identifiable during lamp operation as light-density non-uniformity, for example on the luminous side of a flat lamp.
DESCRIPTION OF THE INVENTION
The object of the present invention is to avoid the disadvantages mentioned above and to provide a discharge lamp according to the precharacterizing cause of claim
1
which has a phosphor and/or reflective layer improved in terms of homogeneity.
This object is achieved by the characterizing features of claim
1
. Particularly advantageous refinements are described in the dependent claims.
According to the invention, that layer which is arranged essentially directly underneath the phosphor or reflective layer of the discharge lamp consists of a glass solder whose viscosity variation as a function of temperature is irreversible. This feature is described in more detail below. For the sake of simplicity, this layer will also be referred to below as the “supporting” layer or “anti-ice-floe layer”.
In this context, essentially directly underneath the phosphor or reflective layer of the discharge lamp means that as far as possible there should be no other layer between the “supporting” layer and the porous phosphor or reflective layer, or at most only a very thin one. The maximum allowable thickness for such an additional layer is dictated by the condition that, when the lamp is heated (heating up, assembly process etc.) the porous phosphor or reflective layer arranged directly above must not be able to tear as a result of excessive “movement” because of the softening of the additional layer. Depending on its make-up and composition, the thickness of any additional layer should not exceed 100 &mgr;m, preferably 50 &mgr;m, typically 10 &mgr;m, ideally 5 &mgr;m. The “supporting” layer is, however, preferably arranged directly underneath the phosphor or reflective layer, i.e. without any additional layer between the “supporting” layer and the phosphor or reflective layer.
This “supporting” layer (“anti-ice-floe layer”) may be formed either by the actual barrier layer acting as a dielectric impediment for the discharge, or by an interlayer arranged between the dielectric barrier layer, on the one hand, and the reflective and/or phosphor layer, on the other.
This interlayer should cover at least all of the dielectric barrier layer, and may even be applied “full-surface”. For the effect according to the invention, it has been found to be sufficient if the thickness of this “supporting” interlayer is of the order of about 10 &mgr;m or more. The system, typically in paste form, is applied using standard methods such as spraying, dispensing, roller application, screen or stencil printing, etc.
The dielectric barrier layer can be applied both in strip form to the individual electrodes (for unilateral and bilateral dielectric impediment) and—in the case of bilaterally dielectrically impeded discharge—“full-surface” by means of a single continuous barrier layer which covers all of the inner-wall electrodes. The selection of the suitable thickness for the barrier layer is essentially dictated by physical discharge requirements and is typically of the order of 10 &mgr;m to several hundred &mgr;m, in particular between 50 &mgr;m and 200 the &mgr;m, typically between 80 &mgr;m and 180 &mgr;m. Furthermore—in the case of bilaterally dielectrically impeded discharge—the thickness of the barrier layer(s) for the anodes or cathodes may also be chosen to be different. Preferably, in unipolar pulse operation (W
0
94/23442), the barrier layer for the anodes is thicker than that for the cathodes, although the layer thicknesses may also be equal.
The advantage of the first solution, i.e. the dielectric barrier layer is at the same time

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Discharge lamp with dielectrically impeded electrodes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Discharge lamp with dielectrically impeded electrodes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Discharge lamp with dielectrically impeded electrodes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2970567

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.