Discharge lamp operating electronic device for improving the rel

Electric lamp and discharge devices: systems – Discharge device and/or rectifier in the supply circuit – Plural discharge devices and/or rectifiers in the supply...

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

315219, 315224, 315DIG5, H05B 3702

Patent

active

061006424

DESCRIPTION:

BRIEF SUMMARY
FIELD OF THE INVENTION

The present invention relates to an electronic device for operating a discharge lamp by converting a frequency of commercial electric power to a high frequency and turning on the lamp using the high frequency, wherein by dispersing the power at the high frequency through a discharge path of a filament, the operating efficiency of the discharge lamp is maximized, the service life of the lamp is also prolonged, and a substantial energy saving can be realized.


BACKGROUND OF THE INVENTION

A conventional inverter comprises two switches S1 and S2, two power supplies E1 and E2 and a LC series circuit consisting of reactor L1 and capacitor C2 which is connected between a junction point of the two switches S1 and S2 and a junction point of the two power supplies E1 and E2 as is indicated in FIG. 2. When the switch S1 is on and the switch S2 is off, current iL flows in a direction indicated by the arrow through the LC series circuit. On the contrary, when the switch S1 is off and the switch S2 is on, the current iL flows in an opposite direction through the LC series circuit.
By turning on and off the switches S1 and S2 alternately, the direction of the current flowing through the LC series circuit can be continuously changed. Thus, when the switches are turned on and off at a speed T=1/Fo which is approximate to an intrinsic resonance frequency (see the following Expression 1) of the LC series circuit, a voltage VL1 (see the following Expression 2) is generated across the reactor L1 while voltage VC1 (see the following Expression 2) is generated across the capacitor C1.
FIG. 1 shows a circuit of a discharge lamp operating device employing a self-excited inverter, to which the above principle is applied, reconstructing the circuit in FIG. 2. The circuit in FIG. 1 is provided with semiconductor devices, that is transistors Q1 and Q2, for use in place of switches S1 and S2. Instead of the power supplies E1 and E2 of the circuit in FIG. 2, the circuit in FIG. 1 has an operating power supply E for supplying power from the outside, and capacitors C2 and C3 for storing power are connected to perform the same function as the power supplies E1 and E2 respectively. Thus, the circuit in FIG. 1 is configured to be equivalent to the circuit in FIG. 2. In order to turn on and off the transistors Q1 and Q2 alternately, an oscillation transformer T1 is inserted between a junction point of the transistors Q1 and Q2 and the reactor L1, and secondary side coils of the oscillation transformer T1 are connected between a base and an emitter of the transistors Q1 and Q2, respectively, in such a way that directions of induction of voltages in the secondary side coils oppose each other.
When an actuating signal is supplied to the transistor Q2 in FIG. 1, the transistor Q2 is turned on and a current iL starts flowing in a direction opposite to that indicated by the arrow. If a voltage induced to the secondary side of the oscillation transformer T1 turns off the transistor Q1 and sufficiently turns on the transistor Q2 and the oscillation transformer T1 becomes saturated, then the directions of induction of the voltages in the secondary side coils of the transformer TI are reversed. By turning on the transistor Q1 and turning off the transistor Q2, the current iL starts flowing in a direction indicated by the arrow in FIG. 1. When the oscillation transformer T1 becomes saturated, the directions of induction of the voltages in the secondary side coils of the oscillation transformer T1 are reversed and then the transistor Q1 is turned off and the transistor Q2 is turned on. This operation is repeated in a self-excitatory (self-excited) manner without supplying any external signals, at which time a voltage represented by the following expression 3 is generated across capacitor C1.
In the circuit described in FIG. 1, a hot-cathode discharge lamp LA is connected across the capacitor C1 so that a voltage generated across the capacitor C1 is transferred to the hot-cathode discharge lamp LA to operate the hot-cathode disch

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Discharge lamp operating electronic device for improving the rel does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Discharge lamp operating electronic device for improving the rel, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Discharge lamp operating electronic device for improving the rel will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1153123

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.