Dynamic magnetic information storage or retrieval – Head mounting – For moving head into/out of transducing position
Reexamination Certificate
1998-12-18
2001-03-13
Renner, Craig A. (Department: 2652)
Dynamic magnetic information storage or retrieval
Head mounting
For moving head into/out of transducing position
Reexamination Certificate
active
06201666
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to the field of rigid disc drives, and more particularly, but not by way of limitation, to a head suspension for a disc drive that includes a novel contact feature that facilitates the ramp loading and unloading of the heads away from and into operative relationship with the discs in the disc drive.
BACKGROUND OF THE INVENTION
Disc drives of the type known as “Winchester” disc drives, or hard disc drives, are well known in the industry. Such disc drives magnetically record digital data on a plurality of circular, concentric data tracks on the surfaces of one or more rigid discs. The discs are typically mounted for rotation on the hub of a brushless DC spindle motor. In disc drives of the current generation, the spindle motor rotates the discs at speeds of up to 10,000 RPM.
Data are recorded to and retrieved from the discs by an array of vertically aligned read/write head assemblies, or heads, which are controllably moved from track to track by an actuator assembly. The read/write head assemblies typically consist of an electromagnetic transducer carried on an air bearing slider. This slider acts in a cooperative hydrodynamic relationship with a thin layer of air dragged along by the spinning discs to fly the head assembly in a closely spaced relationship to the disc surface. In order to maintain the proper flying relationship between the head assemblies and the discs, the head assemblies are attached to and supported by head suspensions or flexures.
The actuator assembly used to move the heads from track to track has assumed many forms historically, with most disc drives of the current generation incorporating an actuator of the type referred to as a rotary voice coil actuator. A typical rotary voice coil actuator consists of a pivot shaft fixedly attached to the disc drive housing base member closely adjacent the outer diameter of the discs. The pivot shaft is mounted such that its central axis is normal to the plane of rotation of the discs. An actuator bearing housing is mounted to the pivot shaft by an arrangement of precision ball bearing assemblies, and supports a flat coil which is suspended in the magnetic field of an array of permanent magnets, which are fixedly mounted to the disc drive housing base member. On the side of the actuator bearing housing opposite to the coil, the actuator bearing housing also typically includes a plurality of vertically aligned, radially extending actuator head mounting arms, to which the head suspensions mentioned above are mounted. When controlled DC current is applied to the coil, a magnetic field is formed surrounding the coil which interacts with the magnetic field of the permanent magnets to rotate the actuator bearing housing, with the attached head suspensions and head assemblies, in accordance with the well-known Lorentz relationship. As the actuator bearing housing rotates, the heads are moved radially across the data tracks along an arcuate path.
Disc drives of the current generation arc included in desk-top computer systems for office and home environments, as well as in laptop computers which, because of their portability, can be used wherever they can be transported. Because of this wide range of operating environments, the computer systems, as well as the disc drives incorporated in them, must be capable of reliable operation over a wide range of ambient temperatures.
Furthermore, laptop computers in particular can be expected to be subjected to large amounts of mechanical shock as they are moved about. It is common in the industry, therefore, that disc drives be specified to operate over ambient temperature ranges of from, for instance, −5° C. to 60° C., and further be specified to be capable of withstanding operating mechanical shocks of 100 G or greater without becoming inoperable. Moreover, future disc drive products are being developed which must be capable of withstanding non-operating shocks of up to 1000 G without suffering fatal damage.
One of the undesirable possible consequences of mechanical shocks applied to a disc drive is the phenomenon commonly referred to in the industry as “head slap”. This condition occurs when the applied mechanical shock is large enough to overcome the load force applied to the head assembly by the head suspension. Under such conditions, the head assembly lifts away from the disc surface, and when the shock event terminates, the head assembly moves back into contact with the disc in an uncontrolled manner, potentially causing damage to the head assembly, disc or both.
One common preventive measure used in the industry to prevent head slap is to use ramps closely adjacent the outer diameter of the discs to unload the heads from engagement with the discs when a non-operating condition, such as loss of disc drive power, is detected. Since the heads are no longer resting on the disc surface, applied mechanical shocks cannot cause uncontrolled contact between the heads and discs. Once proper operational conditions are restored, the head assemblies are reloaded into engagement with the discs for normal disc drive operation.
In order to ramp load/unload the head assemblies, the head suspensions which support the head assemblies must include some sort of ramp contact feature to cooperate with the ramps, and these ramp contact features can be divided into two general groups: 1) ramp contact features located adjacent the leading edge of the head assembly, i.e., between the actuator pivot point and the head assembly; and 2) ramp contact features located adjacent the trailing edge of the head assembly, i.e., at the far distal end of the head suspension.
Head suspensions that include ramp contact features from the first group have the advantages of low mass and inertia during actuator seeks, high modal frequencies, good operating shock characteristics and simple access to the bonding pads used for electrical connection of the head transducers. The prior art use of this type of ramp contact feature does, however, have the disadvantages of requiring a parabolic ramp surface to ensure point contact between the ramp surfaces and the ramp contact features and insufficient clearance between the ramp contact feature and the disc surface to allow for assembly tolerances in a multi-disc disc drive assembly.
Head suspension assemblies that include ramp contact features from the second group have the advantages of allowing for flexibility of design of the contact features to allow for sufficient spacing between the disc surface and the ramp contact features, and the capability of having the ramp contact feature located on the head suspension centerline to limit static attitude biases on the gimbal of the head suspension. However, such assemblies typically introduce unwanted mass and inertia during seek operations, have less desirable modal frequencies, less desirable operating shock characteristics and greatly restricted access to the head assembly electrical bonding pads.
All of the advantages of head suspensions from the first group noted above are achieved by the present invention, without suffering several of the noted disadvantages of the second group.
SUMMARY OF THE INVENTION
The present invention is a head suspension for mounting and supporting the head assembly in a disc drive. The head suspension includes a ramp contact feature located adjacent the leading edge of the head assembly, and the ramp contact feature is in the form of an inclined cylinder with a spherical contact end. The shape of the ramp contact feature allows for simplification of the ramp surface profile and provides the ability to allow for assembly tolerance build-up in multi-disc disc drive assemblies.
It is an object of the present invention to provide a head suspension assembly for a disc drive.
It is another object of the invention to provide a head suspension assembly that includes a ramp contact feature for facilitating ramp loading and unloading of the head assembly.
It is another object of the invention to provide a head suspension that has improved ramp contact c
Heller III Edward P.
Renner Craig A.
Seagate Technology LLC
LandOfFree
Disc drive head suspension with single-point contact feature... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Disc drive head suspension with single-point contact feature..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Disc drive head suspension with single-point contact feature... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2541657