Motor vehicles – Special driving device – Stepper
Patent
1993-02-04
1994-08-16
Hill, Mitchell J.
Motor vehicles
Special driving device
Stepper
180 71, 180 87, 180 932, B62D 55065
Patent
active
053378466
DESCRIPTION:
BRIEF SUMMARY
TECHNICAL FIELD
The present invention relates to a disaster relief robot which can prevent a downfall over a precipice or the like, and which can ensure the safety of an operator during field transportation of relief supplies such as relief apparatus and materials, medicines or food stuffs in the case of a wide-area disaster caused by an earthquake, a heavy rain, a landslide or the like, and also relates to an operation controller for the robot.
BACKGROUND
Heretofore, there has been provided a remote-controlled travelling robot which incorporates four travelling crawlers and which is used for disposal of dangerous substance in a nuclear power facility or on a flat land (refer to, for example, Japanese Patent Publication No. 63-270). As shown in FIG. 18, this robot is arranged such that crawlers 2, independent from each other, are provided at four corners of a robot body 1, that is, they are attached to the robot body 1 through the intermediary of pivot shafts 2a, respectively, so that they can be pivoted independently from each other. Accordingly, while the crawlers are positioned horizontally for normal travel, they can be made to stand upright for smooth movement in a narrow space and they can be inclined for overriding a bump.
However, in the case of outdoor use of the conventional robot on an off-road place or a place around a stricken area in a wide-area disaster, the robot is remote-controlled in its alert posture such that, in a cave-in area, the rear crawlers 2R are downwardly inclined to direct a stereo camera 3 mounted on the robot body 1 downwardly and forwardly, as shown in FIG. 19(a). The robot can be operated with a certain caution in indoor use since there is no obstacle disturbing the field of view of the camera 3, but, in the case of outdoor use around the stricken area, the field of view can be possibly disturbed by obstacles such as weeds so that the robot sometimes continues to advance even though the front crawlers 2F leave the ground as shown in FIG. 19(b). Should it continue to advance, the front crawlers 2F would become unsupported in their entirety so that the gravitational center of the robot body is shifted forwardly. In such a case, although the operator hurriedly instructs the robot to back up (as shown in FIG. 19(c)), the robot can fall into the cave-in depression since the gravitational center of the robot body is shifted towards the cave-in depression (as shown in FIG. 19(d)). Alternatively, as shown in FIG. 19(e), even though it is initially found that the robot body 1 is inclined forwardly, it cannot be readily determined whether this is caused by a concavity or convexity, or a cave-in depression. Accordingly, the advance of the robot is continued with monitoring. Even through an instruction to back up is issued due to the fact that an increase in inclination is found, the robot can slip (as shown in FIG. 19(f)) and then fall into the cave-in depression since the gravitational center of the robot body is shifted towards the front crawlers 2F (as shown in FIG. 19(d)). In particular, a large gripping force cannot be obtained if it travels on a muddy, sandy or weedy place, and accordingly, the robot tends to slip.
Further, in the case of climbing a bump, the robot normally travels until the front crawlers 2F come into contact with the bump as shown in FIG. 20(a). Then, the robot further advances while the front crawlers 2F are pivoted upwardly and elevated (as shown in FIG. 20(b), and thereafter, the front and rear crawlers 2F, 2R are pivoted downwardly in order to raise the robot body 1 (as shown in FIG. 20(c)) so that the robot advances to bring the rear crawlers 2R into as close contact with the surface of the bump as it possibly can (refer to FIG. 20(d)). However, if the rear crawlers 2R are forced to climb the bump in such a condition that the rear crawlers 2R make contact with an inclined surface of the bump (as shown in FIG. 20(e)), then when the rear crawlers 2R are pivoted upwardly and elevated, the gravitational center of the robot body 1 would be shifted rearwa
REFERENCES:
patent: 3730287 (1973-05-01), Fletcher et al.
patent: 4977971 (1990-12-01), Crane, III et al.
patent: 5174405 (1992-12-01), Carra et al.
Matsuda Tomoo
Ogaki Koji
Sakamoto Takuya
Takagi Kimihiko
Hill Mitchell J.
Kabushiki Kaisha Komatsu Seisakusho
LandOfFree
Disaster relief robot and operation controller therefor does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Disaster relief robot and operation controller therefor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Disaster relief robot and operation controller therefor will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-945633