Directly compressible high load acetaminophen formulations

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Tablets – lozenges – or pills

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S489000, C424S490000, C424S464000, C424S465000, C424S497000

Reexamination Certificate

active

06391337

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to methods of preparing solid dosage forms using direct compression techniques. In particular, the present invention relates to methods of directly compressing tablets containing relatively high amounts of acetaminophen based on the total tablet weight.
In order to prepare a solid dosage form containing one or more active ingredients (such as drugs), it is necessary for the materials to be compressed into the dosage form possess certain physical characteristics which lend themselves to solid dosage form processing. Among other things, the material to be compressed must be free-flowing, must be lubricated, and, importantly, must possess sufficient cohesiveness to insure that the solid dosage form remains intact after compression.
In the case of tablets, the tablet is formed by pressure being applied to the material to be tableted on a tablet press. A tablet press includes a lower punch which fits into a die from the bottom and a upper punch having a corresponding shape and dimension which enters the die cavity from the top after the tabletting material fills the die cavity. The tablet is formed by pressure applied on the lower and upper punches. The ability of the material to flow freely into the die is important in order to insure that there is a uniform filling of the die and a continuous movement of the material from the source of the material, e.g. a feeder hopper. The lubricity of the material is crucial in the preparation of the solid dosage forms since the compressed material must be readily ejected from the punch faces.
Since most drugs have none or only some of these properties, methods of tablet formulating have been developed to impart these desirable characteristics to the material(s) which is to be compressed into a solid dosage form. Typically, excipients are added to the formulation which impart good flow and compression characteristics to the material as a whole which is to be compressed. Such properties are typically imparted to these excipients via a pre-processing step such as wet granulation, slugging, spray drying, spheronization, or crystallization. Useful direct compression excipients include processed forms of cellulose, sugars, and dicalcium phosphate dihydrate, among others.
Lubricants are typically added to avoid the material(s) being tabletted from sticking to the punches. Commonly used lubricants include magnesium stearate and calcium stearate. Such lubricants are commonly included in the final tabletted product in amounts usually less than 1% by weight.
In addition, solid dosage forms often contain diluents. Diluents are frequently added in order to increase the bulk weight of the material to be tabletted in order to make the tablet a practical size for compression. This is often necessary where the dose of the drug is relatively small.
Another commonly used class of excipients in solid dosage forms are binders. Binders are agents which impart cohesive qualities to the powdered material(s). Commonly used binders include starch, and sugars such as sucrose, glucose, dextrose, and lactose.
Disintegrants are often included in order to ensure that the ultimately prepared compressed solid dosage form has an acceptable disintegration rate in an environment of use (such as the gastrointestinal tract). Typical disintegrants include starch derivatives and salts of carboxymethylcellulose.
There are three general methods of preparing the materials to be included in the solid dosage form prior to compression: (1) dry granulation; (2) wet granulation; and (3) direct compression.
Dry granulation procedures may be utilized where one of the constituents, either the drug or the diluent, has sufficient cohesive properties to be tabletted. The method includes mixing the ingredients with a lubricant, if required, slugging the ingredients, dry screening, lubricating and finally compressing the ingredients.
The wet granulation procedure includes mixing the powders to be incorporated into the dosage form in, e.g., a twin shell blender or double-cone blender under shear mixing conditions and thereafter adding solutions of a binding agent to the mixed powders to obtain a granulation. Thereafter, the damp mass is screened, e.g., in a 6- or 8-mesh screen and then dried, e.g., via tray drying or fluid-bed drying. The wet granulating technique is rather time consuming due to its process steps and can also be considered to be relatively expensive. In addition, wet granulating has been known to reduce the compressibility of some pharmaceutical ingredients including microcrystalline cellulose.
Direct compression, on the other hand, is regarded as a relatively quick process wherein the powdered materials included in the solid dosage form are compressed directly without modifying their physical nature. Usually, the active ingredient, direct compression vehicle and other ancillary substances, such as a glidant to improve the rate of flow of the tablet granulation and lubricant to prevent adhesion of the tablet material to the surface of the dies and punches of the tablet press, are blended in a twin shell blender or similar low shear apparatus before being compressed into tablets. This type of mixing of the ingredients was believed to be essential in order to prepare pharmaceutically acceptable dosage forms. For example,
Remington's Pharmaceutical Sciences,
16th Edition (1980), Arthur Osol, Ed., cautions artisans that the manner in which a lubricant is added to a formulation must be carefully controlled. Consequently, lubricants are usually added to a granulation by gentle mixing. At page 1556,
Remington's
, warns: “Prolonged blending of a lubricant with a granulation can materially affect the hardness and disintegration time for the resulting tablets.” Further, those of ordinary skill in the art have long believed that excessive mixing of a lubricant with the granulate ingredients overcoats the granules and reduces the tablet hardness or tablet strength of the compressed tablets. Thus, for at least these reasons, high shear mixing conditions have not been used to prepare direct compression dosage forms.
Pharmaceutical manufacturers would often prefer to use direct compression techniques over wet or dry granulation techniques because of its processing time and cost advantages. Direct compression, however, is usually limited to those situations where the drug or active ingredient has a requisite crystalline structure and the physical characteristics required for formation of a pharmaceutically acceptable tablet. Often, however, one or more excipients must be combined with the active ingredient before the direct compression method can be used since many active ingredients do not have the necessary properties. Since each excipient added to formulation necessarily increases the tablet size of the final product, artisans were often limited to using direct compression techniques in formulations containing a rather low load of active ingredient per compressed tablet. Solid dosage forms containing the drug to be administered in a relatively high load or dose (e.g., the drug itself comprises a substantial portion of the total compressed tablet weight), could only be directly compressed if the drug itself had sufficient physical characteristics (e.g., cohesiveness) for the ingredients to be directly compressed.
For example, acetaminophen, a widely used analgesic, is considered to be a high load active ingredient. Most commercial compressed tablet formulations include anywhere from 70 to 85% by weight acetaminophen per finished tablet. This high load of active ingredient combined with its rather poor physical characteristics for direct compression have not allowed pharmaceutical manufacturers to use direct compression techniques to prepare the final tablets. Previous attempts to directly compress acetaminophen with microcrystalline cellulose have failed to provide an acceptable product. The final products tend to be soft, prone to capping and otherwise not commercially desirable, i.e., difficult to swallow because of the la

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Directly compressible high load acetaminophen formulations does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Directly compressible high load acetaminophen formulations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Directly compressible high load acetaminophen formulations will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2864253

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.