Directional catheter

Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S284000, C604S528000

Reexamination Certificate

active

06231563

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to catheters and particularly to directional catheters for use in medical applications.
BACKGROUND ART
The placement of prosthetic devices, such as stents and grafts, intraluminally and the conduct of operative procedures intraluminally has grown dramatically in recent years. In many of these placements and procedures, it is necessary to initially position a guidewire into a desired part of the lumen of a desired vessel or duct, such as a blood vessel. Once an initial guidewire is in place, a catheter or other tubular device may be positioned over the guidewire and used to convey another guidewire, a prosthesis, an endoscope or a surgical instrument into the desired blood vessel or duct.
There are a variety of techniques used to position guidewires in branching vessels intraluminally. One technique is to position a relatively stiff guidewire in a bodily vessel and then to pass over it a catheter having a region proximate its tip that normally assumes an angled, curved or some other configuration. On positioning the catheter over the stiff guidewire in the necessary position, the stiff guidewire is withdrawn allowing the region near the tip of the catheter to assume its normal configuration. A thin guidewire can then be fed through the catheter and directed in the direction assumed by the catheter. The thin guidewire is preferably sufficiently floppy that it is directed by the catheter in the direction assumed by the catheter rather than causing the catheter to adopt the configuration of the thin guidewire. As the first stiff guidewire must firstly be removed to allow the insertion of the thin guidewire, it is clinically undesirable to re-insert the stiff guidewire if required at a later time. Further, withdrawal of the stiff guidewire leads to there being no control over the position assumed by the catheter and it is common for the catheter to assume an undesirable position thereby requiring re-insertion of the stiff guidewire to correct the situation. The strength of the catheter further limits the stiffness of the thin guidewire or another secondary catheter that may be subsequently inserted through the catheter which can lead to further complications in successfully positioning a guidewire through the branching bodily vessel.
One example of a guiding catheter is described in U.S. Pat. No. 4,898,577 to Badger et al. The Badger guiding catheter comprises a single elongated shaft having a deflectable distal portion, the angle of deflection of the distal portion relative to the elongated shaft being controlled by a pull wire that extends from the distal portion back through a lumen to a proximal end of the catheter where it can be controlled by a physician. Once the distal portion is at the required deflection, the guidewire is fed through the catheter.
Another type of directable catheter is the so-called torquable catheter, an example of which is described in Australian Patent Specification AU-A-32951/95 to Lundquist. The Lundquist catheter once again has a single elongated shaft which has a flexible portion which can bend under the control of a physician to deflect the end of the catheter and so direct a guidewire passing therethrough in a desired direction.
Even with directable or torquable catheters, physicians still often encounter problems in achieving desired placement of guidewires and catheters in bodily vessels. Problems are especially encountered when it is necessary to direct a guidewire into a vessel branching of the main vessel. Conversely, problems also arise of a guidewire undesirably entering a branching vessel instead of remaining in the main vessel.
One example where it is often necessary to direct a guidewire into a branching vessel is in the placement of an intraluminal graft into a patient to achieve bridging and occlusion of an aneurysm of the aorta, iliac or other arteries. The present invention is directed to an alternative directional catheter which can be used for the intraluminal placement of a guidewire or catheter in a bodily vessel or cavity.
DISCLOSURE OF THE INVENTION
The present inventors have determined that substantial advantages over traditional techniques can be gained by positioning a main guidewire in a bodily vessel and then using that guidewire as a platform to insert and support a catheter, which catheter can be used to direct a supplementary guidewire and/or catheter in a direction transverse to the locus of the main guidewire.
Accordingly, in a first aspect, the present invention consists in an intraluminal catheter for insertion through a bodily vessel, the catheter having a first elongate tubular member defining a first lumen, the tubular member having a main portion and on its outer surface a support means adapted to slide over a main guidewire positioned in the vessel, the first elongate tubular member having an end portion that is deflectable relative to the locus of the main portion to direct a supplementary guidewire passing through the first lumen into the bodily vessel in a direction transverse to the locus of the main guidewire
The provision of the support means on the intraluminal catheter allows the intraluminal catheter to be supported on the main guidewire already positioned in a bodily vessel as the supplementary guidewire is fed through the first lumen. The use of such a catheter removes the need to withdraw the stiff guidewire before insertion of the supplementary guidewire. Further, the support during deployment of the supplementary guidewire ensures the guidewire is deployed in a direction desired by the physician transverse to the locus of the main guidewire.
In one embodiment, the support means can comprise a second elongate tubular member in side-by-side configuration with the first tubular member. The second tubular member can be at least as long as the first elongate tubular member. The catheter can also have a third or further number of lumens.
The end portion can have a surface angled to the locus of the first lumen or an extension thereof such that the supplementary guidewire on passing through the first lumen will strike the angle surface and be further deflected laterally out of the locus of the first lumen or the extension thereof. The angled surface is preferably positioned within the first lumen with the first tubular member having an aperture opposite the angled surface such that the supplementary catheter on passing through the first lumen is deflected by the angled surface through the aperture. The angled surface can be proximate a free end of the first tubular member.
In another embodiment, the catheter can further comprise a means to control the deflection of the end portion relative to the locus of the main portion.
In a further embodiment the controlling means can comprise a control wire that extends along the catheter and is secured to the end portion with retraction of the control wire relative to the catheter deflecting the end portion relative to the locus of the main portion. If desired, the control wire can be disposed within a further lumen of the catheter.
The main portion of the first tubular member can normally assume a straight configuration and the end portion can normally assume a curved configuration, the catheter further having a sleeve that is relatively movable longitudinally with respect to the first tubular member between a first position where the sleeve surrounds the end portion and so straightens the end portion and a second retracted position where the end portion is free to assume its normal curved configuration.
In this specification, the normal configuration of the first tubular member according to the present invention is taken to be configuration adopted by the tubular member when the catheter is outside the body and the sleeve is in the second retracted position relative to the first tubular member.
In another embodiment, the main portion can normally assume a straight configuration and the end portion can be preformed at an angle to the main portion, the catheter further having a sleeve that is relatively movable

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Directional catheter does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Directional catheter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Directional catheter will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2548998

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.