Direct sequence spread spectrum method computer-based...

Pulse or digital communications – Spread spectrum – Direct sequence

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C375S344000, C375S355000

Reexamination Certificate

active

06639939

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is directed to communications-related systems, networks apparatuses and methods as well as computer-based digital signal processing mechanisms and methods used therein. More particularly, the invention is directed to the field of direct sequence spread spectrum (DSSS) communication that employ a DSSS transmitter and a DSSS receiver, or transceiver configured to convey a data signal in a transmitted DSSS signal by spreading the data signal on transmission and correlating on reception so as to “despread” the DSSS signal and recover the data signal.
2. Discussion of the Background
Conventional narrowband (i.e., non-spread spectrum) radio communication devices transmit signals in frequency bandwidths that are roughly equivalent to a data signal bandwidth (or information bandwidth). These devices typically use a radio-frequency (RF) carrier derived from a frequency reference (i.e., a device that produce a precise frequency, although the accuracy of the frequency usually depends on the cost of the device) and modulate the data on the RF carrier. Common conventional data modulation methods such as frequency modulation (FM), phase modulation or amplitude modulation (AM) cause the RF carrier to occupy slightly larger bandwidth then the RF carrier alone, but the total bandwidth for the RF carrier and data is not much larger. As such, interference signals (e.g. jammers) that are transmitted in the same bandwidth as the RF carrier and data can effectively “jam” the signal and prevent a receiver from reproducing the data signal. Aside from jamming, disturbances in the communications path between the transmitter and receiver can interfere with reception. For example, fading due to multipath or atmospheric obstruction can attenuate the signal significantly. Also, shadowing becomes significant if the signal must pass through solid matter such as buildings, walls, floors or trees and vegetation.
Spread spectrum radio communication addresses the shortcomings of narrowband communications by mixing (i.e. applying) a wideband spreading signal to the data signal so as the “spread” the data signal. In these types of systems, the transmitter also modulates a RF carrier with data, as with the narrowband systems, but then adds one more modulation step by modulating the signal with a wideband, noise-like signal (e.g. a PN code). Consequently, the data signal is spread in frequency over a much larger bandwidth, typically several million Hertz (MHZ). Common spread spectrum techniques include frequency hopping and DSSS. Frequency hopping systems move (i.e., “hop”) the data modulated carrier to frequencies following a pseudo-random pattern defined by the PN code. DSSS mix a PN code with the data modulated carrier to create a DSSS signal which simultaneously occupies roughly the bandwidth of the pseudo noise signal.
Narrowband interference signals transmitted at same frequency as a portion of the spread signal, “jam” the spread signal by an amount proportional to the ratio of jammer bandwidth to pseudo-noise bandwidth. At a minimum, the interference signal will at least be attenuated by a “processing gain” of the spread spectrum signal, where processing gain is defined as a ratio of data signal bandwidth to spread signal bandwidth. For similar reasons, spread spectrum signals also offer some degree of immunity to channel fading and multipath loss.
DSSS systems have been used in the past to achieve low probability of intercept (LPI) for secure communication and thus are valuable in military applications or other scenarios requiring covert communications. DSSS is also used in places where multipath or fading is prevalent, such as satellite communication. For example, Global Positioning System (GPS) operates using DSSS techniques. However, as recognized by the present inventors, conventional DSSS systems are expensive (considering the transmitter and receiver) because relatively high performance frequency references and digital signal processing equipment is used. Accordingly, DSSS techniques are most commonly used in military and high-end consumer market, where component cost is less of a factor than with low-end consumer product.
Conventional direct sequence spread spectrum transceivers are directed towards high-end systems (e.g. systems costing in the hundreds or thousands of dollars in 1997) that require advanced, if not state-of-the-art, digital signal processing equipment, and associated components. Past DSSS systems have avoided using lower cost components because conventional wisdom dictates that selectively high fidelity frequency references are required at the transmitter and receiver, as well as powerful digital signal processing equipment so to compensate for even minor frequency deviations between transmitter and receiver systems. Contrary to conventional DSSS design practice, the present inventors have identified that these conventional DSSS devices are not applicable for low-end, inexpensive, commercial use applicable for high-volume sale, nor are they well suited for small packages, that may be used in a variety of non-standard field uses, such as, for example, home security and fire systems, data telemetry, access control, remote meter reading as well as other applications.
As recognized by the present inventors, one factor that drives the cost of conventional systems is the use of lengthy PN codes that require substantial digital signal processing to be despread in a receiver. While there are many advantages to using a long code (such as with code division multiple access, CDMA, telephony which permits many users to transmit on a common channel at the same time) the present inventors have recognized that a shorter code, such as a 63 bit PN code, may enable the use of components applicable for lower cost applications.
FIG. 1
is a block diagram of a conventional receive system that of either a conventional receiver (either narrowband or DSSS receiver). The receive system includes a RF front end section
120
, a first local oscillator (
109
,
112
,
111
, and
110
, as will be discussed) section, an analog-to-digital conversion section
121
, baseband mixing section (
115
, as will be discussed) and a baseband processing section
122
, as shown. The details of the conventional receiver are described below, following a general overview description. The RF section
120
performs the function of converting electromagnetic wave energy (including the transmitted signal) and outputting an analog signal. The analog signal is maintained within a predetermined signal level range, as controlled by an automatic gain control circuit (AGC) as shown. The output from the RF front end is provided to a first local oscillator section having a mixer
109
, which translates the analog signal to a lower frequency by using a precise, and generally expensive, voltage controlled oscillator
110
. By employing the precise voltage controlled oscillator
110
, the position of the translated signal (i.e., a down converted signal), is controlled to within a narrow predetermined frequency range.
The downconverted signal is then passed to the intermediate frequency processing section
121
, that adds appropriate gain prior to a digitalization process while filtering out-of-band images necessary for the digitization process, as will be discussed herein. The output of the intermediate frequency section is passed to the analog to digital converter ADC shown as mixer
115
(as will be discussed), which converts the analog signal into a digital representation for subsequent processing in the baseband section
122
.
In this conventional architecture, the analog AGC's function is to keep the signal level applied to the ADC
115
within an operational range of the ADC. Once digitized, the signal is passed to the baseband section
122
, where digital signal processing operations are performed on the signal and the signal is detected and demodulated, resulting in outputting the data signal originally transmitted from the transmitter (either in a spread o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Direct sequence spread spectrum method computer-based... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Direct sequence spread spectrum method computer-based..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Direct sequence spread spectrum method computer-based... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3124108

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.