Direct fuel injection using multiple fluid actuators per nozzle

Internal-combustion engines – Combustion chamber means having fuel injection only – Using multiple injectors or injections

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06298822

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to a system and method for delivering fuel for combustion in an internal combustion engine. More specifically, the present invention relates to a system and method for utilizing a plurality of fuel delivery assemblies to deliver fuel to each combustion chamber of an internal combustion engine.
2. Description of the Related Art
Generally, an internal combustion engine ignites a mixture of air and combustible fuel within one or more combustion chambers to provide rotational motive force, or torque, to do work. Along with many other factors, optimal performance of an internal combustion engine is dependent upon an adequate supply of fuel for combustion. Two measures of engine performance are illustrative of this dependency: engine torque and engine speed (in revolutions per minute). Generally, the torque produced is proportional to the volume of fuel combusted during a given combustion cycle. That is, under proper conditions, the greater the volume of fuel combusted the greater the force produced from the combustion.
For most applications an engine must be able to provide torque at various speeds as well. For engine speed to increase the flow rate of fuel to the combustion chambers must also increase. Increasing the speed of the engine, however, shortens the time for each combustion cycle. Thus, a fuel delivery system must provide fuel for each combustion cycle at increasingly faster rates as the engine speed is increased. Engine torque and speed can both be limited by the inability of the fuel delivery system to provide fuel at these increasingly faster rates. Engine torque can be limited by an inability to supply the engine with a sufficient volume of fuel for the combustion cycle. Engine speed can be limited by the inability to supply the required volumes of fuel at the needed rate.
In addition to combustible fuel, oxygen is also necessary for combustion. There are various methods of providing fuel and oxygen for combustion to a combustion chamber. The surrounding air, typically, acts as the source of oxygen. An air intake draws in the surrounding air to mix with the fuel. Some delivery systems mix the air and fuel before the two substances are delivered to the combustion chamber. Alternatively, the fuel and air can be delivered separately and mixed within the combustion chamber. Some systems use carburetors to draw fuel vapor into an air stream that is then fed into the combustion chamber. Still other systems use fuel injection to produce fuel vapor from a liquid fuel spray.
There are many current systems and methods of fuel injection. Typically, a programmable logic device controls the operation of the fuel injection system. One or more pumps are used to produce a source of pressurized fuel. A fluid actuator, sometimes a solenoid operated valve, initiates a flow of pressurized fuel to an injection nozzle. In some applications the fluid actuators produce a surge in fuel pressure. The surge in pressure of the fuel causes the injection nozzle to open allowing pressurized fuel to flow through the injection nozzle. The shape of the outlet of the injection nozzle contributes to the atomization of the fuel as it exits the injection nozzle. Still other fuel injection systems use an integrated pump and injection nozzle assembly. The pump is electrically operated and controlled to deliver desired volumes of pressurized fuel at desired rates.
One method of fuel injection is direct fuel injection. In direct fuel injection liquid fuel under pressure is injected by a fuel injector directly into a cylinder before combustion is initiated in the cylinder by a spark plug. The fuel injection system converts the liquid fuel into an atomized fuel spray. The atomization of the liquid fuel effectively produces fuel vapor, aiding in the ignition of the vapor during combustion in the cylinder. Increasing the pressure of the fuel also increases the atomization of the fuel when injected into a cylinder.
Typically, the fuel delivery system is sized to provide adequate fuel volumes and flow rates for the normal expected range of engine torque and power needs. However, the fuel delivery system may be unable to supply the fuel volumes and rates at engine speeds, torque and power levels above the normal expected range. Thus, it may arise that engine torque, speed and power are limited by the ability of the fuel delivery system to supply fuel for combustion. This is particularly the case when fuel delivery systems for one type of engine are applied to higher performance engines, with correspondingly higher fuel volume and flow rate requirements dictated by higher torque, speed and power capabilities.
One option to prevent the fuel delivery system from being a limiting component is to oversize the fuel delivery system so that it is capable of delivering far more fuel than could ever be needed. However, oversizing the fuel delivery system is an inefficient method of operation as the oversized system generally far outstrips the normal requirements. Therefore, it would be beneficial to have a fuel delivery system that can more efficiently deliver desired volumes of fuel at desired flow rates over a larger range of desired engine speeds than current fuel delivery systems.
There is a need, therefore, for an improved technique for supplying combustible fuel in internal combustion engines which can be readily adapted to various engine configurations and performance capabilities. There is a particular need for a technique for fuel injection systems that can supply the higher volumetric (i.e. volume per cycle) and flow rate requirements of high performance engines, while permitting manufactures and designers to draw upon certain existing injection system designs and components.
The present invention relates generally to a fuel injection system. More specifically, the present invention relates to a fuel injection system using a plurality of fluid actuators for each fuel injection nozzle.
SUMMARY OF THE INVENTION
The invention provides a fuel delivery system for an internal combustion engine. The fuel delivery system includes fluid actuators, fuel delivery assemblies and a control system. The fuel delivery assemblies deliver fuel to a combustion chamber. The fluid actuators receive fuel from a source of fuel and direct the fuel to the fuel delivery assemblies. A plurality of fluid actuators deliver fuel to each fuel delivery assembly. The control system controls the operation of a plurality of fluid actuators to provide desired volumes of fuel at desired flow rates through a fuel delivery assembly to a combustion chamber. A fluid actuator can include a pump driven by an electric motor to provide surges of pressurized fuel. The fuel delivery could be provided by a plurality of fluid actuators that directly inject pressurized fuel through each fuel injector into a combustion chamber. The plurality of fluid actuators and each fuel injector can be combined to form a pumpnozzle assembly.
According to another aspect of the present invention, an internal combustion engine is provided that includes a combustion chamber or cylinder, a source of fuel, a plurality of fluid actuators for each combustion chamber, a plurality of fuel delivery assemblies, and a control system. The control system controls the operation of the fuel delivery system to deliver desired flow rates and volumes of fuel to each combustion chamber from a plurality of fluid actuators.
According to another aspect of the present invention, a method is provided for supplying fuel to an internal combustion engine utilizing a plurality of fluid actuators to provide fuel to each combustion chamber of an internal combustion engine through each fuel delivery assembly.


REFERENCES:
patent: 3044401 (1962-07-01), Sawyer
patent: 3851635 (1974-12-01), Murtin et al.
patent: 4116591 (1978-09-01), Mardell
patent: 4227499 (1980-10-01), Brinkman
patent: 4312316 (1982-01-01), Seilly et al.
patent: 4499861 (1985-02-01), Wiegand et al.
patent: 4700672 (1987-10-01), Baguena
patent: 478782

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Direct fuel injection using multiple fluid actuators per nozzle does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Direct fuel injection using multiple fluid actuators per nozzle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Direct fuel injection using multiple fluid actuators per nozzle will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2592322

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.