Direct dye inks and a method of making direct dye inks

Incremental printing of symbolic information – Ink jet – Fluid or fluid source handling means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06715868

ABSTRACT:

BACKGROUND OF THE INVENTION
Thermal ink jet print is a commonly used method of recording images on recording material, such as paper or cloth, by discharging discrete droplets of ink from nozzles of a print head and allowing these droplets to be absorbed by the recording material. Thermal ink jet recording offers opportunities for quiet, high speed, full color printing. Also, images printed with thermal ink jet printers seldom need to be fixed or treated after the ink droplets are absorbed on the recording material.
Thermal ink-jet printing is a non-impact printing process in which ink droplets are formed and thereafter deposited on a print medium in a particular order to form an image on the print medium. The low cost and high quality of the printed output in combination with the relatively noise-free operation of ink jet printers have made ink jet printing a popular and economical alternative to other types of printing in consumer, office, and industrial settings.
Thermal ink-jet printing is one example of a drop-on-demand form of non-impact printing. Other examples of drop-on-demand systems, besides thermal ink jet, are piezoelectric ink jet, acoustic ink jet, and vibrating ink jet systems. Besides drop-on-demand systems, there are also continuous stream ink jet printing systems. In continuous stream ink jet systems, ink is emitted in a continuous stream under pressure through at least one orifice or nozzle. The stream of ink is then broken up into droplets at a fixed distance from the orifice, and the ink droplets are thereafter directed toward the recording medium or recycled into the printing ink supply.
In drop-on-demand systems, an ink droplet is not formed or expelled from the print head unless the droplet is to be placed on the recording medium. Therefore, since drop-on-demand systems require no ink recovery or post-ejection treatment, drop-on-demand systems are typically somewhat simpler in construction and operation than continuous stream ink jet printing systems. Thermal ink jet (sometimes referred to as “bubble jet”) systems are one of the most common types of drop-on-demand ink jet printing systems.
In thermal ink jet printing, the energy for drop formation and ejection is generated by electrically heated resistor elements. The resistor elements heat up rapidly in response to electrical signals from a microprocessor to create a vapor bubble. Superheating of the ink far above the normal boiling point of the ink causes the bubble formation. The expansion of the bubble forces a droplet of ink out of a nozzle at a high rate of speed toward the recording medium. After the collapse of the bubble, the ink channel proximate the resistor elements refills by capillary action.
Colorants for inks printed by thermal ink jet printing may be generally classified as dyes or pigments. Accordingly, thermal ink jet printer inks may incorporate dye(s), pigment(s), or a combination of dye(s) and pigment(s) to print images on the recording media. Of these three, dye-based thermal ink jet printer ink compositions are most widely available commercially.
Dye-based thermal ink jet inks currently in use in the industry demonstrate an inability to achieve acceptable results on both coated silk and coated cotton substrates. The present invention relates to a thermal ink jet printer ink that may incorporate a direct dye. The present invention further relates to a dye-based, thermal ink jet printer ink with the ability to form printed images on a variety of textile medias.
BRIEF SUMMARY OF THE INVENTION
The present invention includes a method of making a ink jet ink. The method entails combining a water miscible organic solvent, water, and a dye, and blending the water miscible organic solvent, the water, and the dye together to form the ink jet ink. The ink jet ink produced by this method is capable of forming a printed image on a variety of coated textiles and cloths. The present invention further includes a method of forming a printed image on a recording medium and a thermal ink jet ink.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention generally concerns a technique for preparing dye-based ink jet inks for use in thermal ink jet printers. The ink of the present invention is beneficially applicable to a variety of coated textiles. More specifically, a particular ink of the present invention can be applied to both coated silk and coated cotton textiles with acceptable results, despite differences between the substrates. This is an advance over the inability of prior dye-based thermal ink jet inks to achieve acceptable results on both coated silk and coated cotton textile substrates. This beneficial property of the inventive ink is believed to be due, in substantial part, to the use of direct dyes as opposed to anionic, cationic, reactive or dispersive dyes. The applicability of the inventive ink to both coated silk and coated cotton textile substrates the ink is attributable to the formulation and dye selection for the inventive ink. The inventive ink is achieved using relatively inexpensive components that are combined using simple equipment via a very simple mixing procedure.
The ink of the present invention includes, at a minimum, water, a water miscible organic solvent, and dye. The dye may be provided as part of a dye solution. The dye solution that may be incorporated as part of the ink of the present invention includes both a dye and a liquid carrier for the dye, typically water. The dye is usually obtained from a commercial source in prepared form. Some examples of suitable, commercially available, dyes include Direct Yellow 132 Dye that is available from Tricon Colors LLC of Elmwood Park, N.J.; Intrajet Liquid Magenta DJL that is available from Crompton & Knowles Colors Incorporated of Charlotte, N.C.; and Duasyn Direct Turquoise Blue FRL-SF Liquid and Duasyn Direct Black HEF-SF Liquid that is available from Clariant Corporation of Coventry, Rhode Island.
The dyes that are included in the inks of the present invention preferably have a nominal particle size of about 0.1 microns or less, and are salt free to enhance the excellent transparency of the inventive inks. To ensure that the dyes, and other components, have not contained any large particulate contamination, it is recommended that the ink be filtered through a 0.45 micron polytetrafluroethylene (PTFE) filter prior to placing the ink in the printing device, such as a thermal ink jet printer.
Some non-exhaustive examples of the water miscible organic solvent of the ink of the present invention include ethers, such as tetrahydrofuran, dioxane, glycol ether, etc.; oxyethylene or oxypropylene addition dimers, trimers, or polymers, such as diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, polyethylene glycol, polypropylene glycol, etc.; alkylene glycols having an alkylene group of 2 to 6 carbons, such as ethylene glycol, propylene glycol, trimethylene glycol, butylene glycol, 1,2,6-hexanetriol, hexylene glycol, etc.; thiodiglycol; glycerin; lower alkyl ethers of a polyhydric alcohol, such as ethylene glycol monomethyl (or monoethyl) ether, diethylene glycol monomethyl (or monoethyl) ether, triethylene glycol monomethyl (or monoethyl) ether, propylene glycol monomethyl (or monoethyl) ether, dipropylene glycol monomethyl (or monoethyl) ether, tripropylene glycol monomethyl (or monoethyl) ether, etc.; lower dialkyl ethers of a polyhydric alcohol, such as triethylene glycol dimethyl (or diethyl) ether, tetraethylene glycol dimethyl (or diethyl) ether, etc.; sulfolane; 1,3-dimethyl-2-imidazolidinone; and any of these in any combination.
The concentration of the water miscible organic solvent in the ink of the present invention may generally range from about 2% to about 30%, by weight, based on the total weight of the ink. The concentration of the water miscible organic solvent in the ink more preferably ranges from about 5% to about 20% by weight, based on the total weight of the ink. The concentration of the water miscible organic solvent in the ink most prefe

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Direct dye inks and a method of making direct dye inks does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Direct dye inks and a method of making direct dye inks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Direct dye inks and a method of making direct dye inks will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3193284

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.