Electricity: motive power systems – Reciprocating or oscillating motor – Energizing winding circuit control
Reexamination Certificate
2000-04-04
2002-03-19
Dang, Khanh (Department: 2837)
Electricity: motive power systems
Reciprocating or oscillating motor
Energizing winding circuit control
C254S404000, C065S484000
Reexamination Certificate
active
06359400
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to an apparatus for supporting and rotating a tubular member mounted on a lathe, and, more particularly, to such an apparatus for use in the MCVD process for producing optical fiber
BACKGROUND OF THE INVENTION
Optical fiber of the type used to carry optical signals is fabricated typically by heating and drawing a portion of an optical preform comprising a refractive core surrounded by a protective glass cladding. Presently there are several known processes for fabricating preforms. The modified chemical vapor deposition (MCVD) process, which is described in U.S. Pat. No. 4,217,027, issued in the names of J. B. MacChesney et al. on Aug. 12, 1980 and assigned to Bell Telephone Laboratories, Inc., has been found to be one of the most useful because the process enables large scale production of preforms which yield very low loss optical fiber.
During the fabrication of preforms by the MCVD process, reactant-containing gases, such as SiCI
4
and GeCI
4
are passed through a rotating substrate or starter tube suspended between the headstock and tailstock of a lathe. A torch assembly, which heats the tube from the outside as the gases are passed therethrough, traverses the length of the tube in a number of passes, and provides the heat for the chemical reactions and deposition upon the inner wall of the tube. The torch assembly also supplies the heat for collapsing the tube to form a rod, and, in subsequent operations, for collapsing an overclad tube onto the rod, as explained in U.S. patent application Ser. No. 09/353,943 of Mueller et al., filed Jul. 15, 1999. In the current manufacture of preforms, the torch is mounted on a carriage which is a solid structure supported and guided on the lathe or machine bed. In such a system, it is desirable that operation of all moving parts be smooth and uniform but there are several areas in which such smooth operation is difficult to achieve. Thus in the systems as currently used, sliding or rolling elements on the carriage are in direct contact with the bed of the lathe or machine or with the ways. In all such systems, the movement of the carriage and the physical contact between it and the bed requires lubrication to eliminate wear and friction. An initial “stick-skip” condition must be overcome during the start of carriage motion which is a result of the friction, and the friction can also induce “jerk” in the movement of the carriage along the bed. In addition, the friction can cause or induce, over a period of time, freeplay in the system as a result of wear. Thus, where a smooth uniform velocity of the torch down the length of the tube virtually is a necessity for uniformity of heating and deposition and, ultimately, a uniformity of product, the friction effects can, and most often do, cause a non-uniform velocity profile, and, as a consequence, non-uniformity of heating and deposition, which result in non-uniformity of product. In present day practice, friction is overcome, at least in part, through the use of lubricants which, during a production run, become a contaminant to the process and spread throughout the machine. This, in turn, necessitates frequent cleaning of the apparatus which is detrimental to the goal of substantially continuous production. Further, the lubricant does not completely eliminate the stick-slip and jerk problems which, as pointed out in the foregoing, most often lead to a non-uniform velocity profile.
The related U.S. patent application Ser. No. 09/500,154 of Mueller is directed to a carriage guidance system that substantially eliminates physical contact between the carriage and lathe bed and, hence, overcomes most if not all of the aforementioned problems. The arrangement shown in that application is a hydrostatic guidance and support system for the movable carriage upon which the torch for the MCVD process is mounted. The carriage, as used on the MCVD lathe, is equipped with integral air bearing components which, in their geometry, match the lathe bed cross-section. Fluid, such as air, under pressure, is delivered to the bearings which, under pressure of the air or whatever fluid is used, in use, cause the carriage to float in spaced relationship to the lathe, thereby producing a substantially friction free support and guide for the carriage, which results in a smooth velocity profile, which, in turn, produces a drastic improvement in the quality (and quantity) of the MCVD product.
There remains, however, in present systems, another source of non-uniform or jerky movement, and that is in the drive system of the lathe for rotating the tubular member or members. The headstocks of the lathe provide the means for rotating, for example, the preform during the process. They operate on a common centerline of rotation and are phased to rotate together. One headstock can function as a tailstock for allowing the preform to rotate as driven by the headstock. Attached to the headstock spindle is a chuck which clamps to the starter tube and the driven headstock spindle is hollow to allow passage of the tube or other apparatus through the bore. In current systems, the headstock/spindle is driven by a mechanical connection to a prime mover, such as an electric motor. The mechanical connection can be a shaft/chain/reducer, a timing belt/sprocket, or a reducing gear train. In all of these cases, the connection represents a maintenance/lubrication/wear concern. Also, the connections have an inherent backlash and stiffness associated with their operation which can result in uneven rotation of the starter tube, and which can affect the overall performance of the control loops and contribute to spindle prime mover to spindle commanded position error.
In addition to the foregoing problems, the even coating of the interior of the tube throughout its length is difficult to achieve. The gaseous coating material is introduced into the tube, under pressure, at, for instance, the tailstock end thereof and proceeds down the tube toward the headstock end. Especially in those instances where the tube is of considerable length, the velocity of the gaseous mixture decreases toward the headstock end, and there is a tendency for it to accumulate in that region, resulting in an unevenness of coating of the tube walls.
SUMMARY OF THE INVENTION
The present invention includes a direct drive spindle assembly which eliminates or alleviates the foregoing problems of the prior art. The assembly comprises a stationary headstock member supported on upstanding support legs mounted to the lathe and within which is mounted, with tapered roller bearings, a hollow spindle. A motor housing is mounted at one end of the headstock member and contains a circular array of motor windings. At the motor end of the spindle is mounted a reduced diameter portion which functions as the rotating motor armature, having winding and commutator magnets mounted thereon for interaction with the motor windings. At the other end of the spindle is mounted a chuck adapter and a chuck for grasping the primary exhaust tube portion of the starter tube. A bored magnetic encoder disk is mounted to the reduced diameter portion of the spindle and separated from the effects of the permanent armature and commutation magnets by shielding, and a circuit board having a detector mounted thereon is attached to the stator or motor housing for reading positional and rotation increment signals from the disk as it rotates with the spindle. The detector output can be applied to a processor which controls the motor power source to vary the speed of the motor, for example.
In accordance with one aspect of the invention, the spindle is rotationally sealed to the motor stator or housing, and the chuck adapter bore and the bore in the reduced diameter or armature portion of the spindle each have O-ring seals thereon so that when the primary exhaust tube and a secondary exhaust tube are inserted in the bores, the interior of the spindle constitutes a sealed chamber. In use, the primary exhaust tube attached to the end of the starter tube ends within the seal
Agere Systems Guardian Corp.
Dang Khanh
Thomas Kayden Horstemeyer & Risley LLP
LandOfFree
Direct drive spindle for use in chemical vapor deposition does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Direct drive spindle for use in chemical vapor deposition, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Direct drive spindle for use in chemical vapor deposition will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2867550